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Abstract

Damage states in laminated composites were studied by considering the model problem of a

laminated beam subjected to three-point bending. A combination of experimental and theore-

tical research techniques was used to correlate the experimental results with the analylical

stress distributions. The analytical solution procedure was ha_ed on the stress formulation ap-

proach of the mathematical theory of elasticity. The solution procedure is capable of calculating

the ply-level stresses and beam displacements for any laminated beam of finite length using the

generalized plane deformation or plane stress state assumption. The beam lamination can be

any arbitrary combination of monoclinic, orthotropic, transversely-isotropic, and isotropic layers.

Prior to conducting the experimental phase of the study the results from preliminary analyses

were examined. Signifcant effects in the ply-level stress dislrihutionswere seen depending on

the fiber orientation, aspect ratio, and whether or not a grouped or interspersed stacking se-

quence was used.

The experimental investigation was conducted to determine the different damage modes in

laminated three-point bend specimens. The test matrix consisted of three-point bend specimens

of 0 ° unidirectional, cross-ply, and quasi-isotropic stacking sequences. The dependence of the

damage initiation loads and ultimate failure loads were studied, and their relalion to damage

susceptibility and damage tolerance of the beam configuration was discussed. Damage modes

were identified by visual inspection, of the damaged specimens using an optical microscope.

The four fundamental damage mechanisms identified were delaminations, matrix cracking, fiber
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breakage, and crushing. The correlation study between the experimental results and the ana-

lytical results were performed for the midspan deflection, indentation, damage modes, and

damage susceptibility. The correlation was primarily based on the distribulion of the in-plane

component of shear stress, Tx_. The exceptions were for the case of a very small aspect ratio

(less than 1.0) where the crushing model of damage was predicted based on the maximum

contact pressure, and for very large aspect ratios (greater than 12.0) where a maximum tensile

bending stress criterion was used for predicting the damaq_ initiation loads.
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Chapter I

Introduction

Composites, although they benefit from being lighter and stiffer than most commonly used

metals, are highly susceptible to damage induced by impact loads. Of primary interest is the

type of damage occurring beneath the surface of contact which often cannot be detected by

visual inspection. This includes any damage that may occur on the back surface which cor-

responds to the interior of a composite structure not accessible for visual inspection. In a

laminated composite, the type o[ damage generally varies as it progresses through the

structure depending on the stacking sequence and ply orientation. The manner in which the

damage changes from one ply to another is important in determining failure modes and the

residual response of the structure.

This study is aimed at investigating the damage modes in a laminated beam which is sub-

jected to a concentrated load that simulates an impact condition. The motivation behind this

study along with the research objectives are presented in this chapter. A statement of the

problem and the approach used to solve the problem are also outlined. A review of the lit-

erature on analytical solution methodologies and damage descriptions in composite beams

is given in Chapter 2. A brief review is also given for the contact problem involving anisotropic
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bodies. Chapter 3 contains the formulation and solution procedure used for finding the

stresses and displacements in a laminated beam under a quasi-static distributed load simu-

lating a low velocity impact. The formulation is based on the mathematical theory of elasticity

using a stress function approach. Preliminary results presented in Chapter 4 illustrate the

effect of geometry, shear coupling, and stacking sequence on the stress distributions in the

beam. These are in the form of either through-the-thickness stress distributions or stress

contours. The experimental phase of the investigation is outlined in Chapter 5, where the test

matrix and testing procedure are described. The resulting load versus displacement curves

and indentations are given. Also, the damage initiation and ultimate failure loads are deter-

mined, and a discussion of the damage susceptibility and damage tolerance of the laminated

beams is provided. On the basis of visual observations the type of damage occurring in each

specimen is described and documented. In Chapter 6 the correlation between analytical

predictions for the stress distributions and experimental results is presented. The relationship

between load and displacement is correlated using a stepwise incremental loading procedure

and a nonlinear relationship between the applied increment of load and the contact patch.

The experimentally observed damage and damage susceptibility is explained in terms of the

predicted local stress states. Remarks which summarize this investigation are offered in

Chapter 7.

1.1 Motivation

1.1.1 Damage and Damage Tolerance

The capability of a structure to sustain load after it has been subjected to an impact which

produces damage is a measure of the structure's damage tolerance. In order to design a
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structure which is considered to be damage tolerant, its response to a specific damage in-

ducing impact load and residual strength must be predictable. Equally important, however,

is the predictability of the damage initiation, i.e, extent and nature of the initial induced dam-

age. Any factors affecting initiation of damage, subsequent growth and/or arrest, and stability

must be determined in order to assess a structure's susceptibility to damage and damage

tolerance. This information is also beneficial in making service life predictions and for deter-

mining inspection intervals. Composite cylinders such as a solid rocket booster and stiffened

panels found in aircraft fuselages are two of the most commonly addressed composite struc-

tures. Knowledge of the local stress distributions in the vicinity of the impact location during

and after the impact is needed to describe and understand the impact induced damage, and

to predict the structural response of these structures.

Response of composite laminates to impact damage has been studied mostly experimentally,

resulting in empirical relations for the residual strength as a function of the impact energy,

or resulting in the development of threshold curves for the residual strength. However, in

order to develop a damage tolerance criterion for prediction of residual strength of any lami-

nate under a prescribed impact load, an appropriate theoretical model based on complete

understanding of the type and extent of the initial damage and progression of the initial dam-

age upon subsequent loading is required. A theoretical model for a structure should consider

geometric effects, the influence of stiffeners or boundary conditions on the stress state, and

the effect of loading paths or applied tractions. The two most important material character-

istics of a composite structure required for predicting residual strength are its material prop-

erties and strengths in the principal material directions.

In the case of a laminated composite structure, the local or ply-level stress state in the

neighborhood of the impacted area and the stacking sequence are important factors to be

considered in understanding damage susceptibility and damage tolerance. To completely

define the ply-level stress state in an arbitrary laminated structure, modifications are needed

to existing analytical tools for calculating stress distributions and displacements. Determining
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the local three-dimensional stress states in an entire composite structure requires very com-

plicated and expensive forms of analyses. Also, the testing of typical structural composite

geometries for experimentally determining the damage around an impact site is very expen-

sive and limited to a small number of test specimens. Consequently, depending on the type

of structure and loading being considered, different analytical models and ideal geometries

are desirable. Once the impact-induced damage has been characterized for ideal cases, this

will form a basis which can then be extended to more complicated composite structures. For

example, to study the local behavior and damage state between two stiffeners of a stiffened

panel in a fuselage, a three dimensional analysis based on plate theory assumptions could

be used. However, in some instances additional assumptions can be made on the stress state

which further simplifies the analysis and reduces the problem to two dimensions. Conse-

quently, the basis for a better understanding of a composite's structural response to impact

loads, and associated damage mechanisms and failure modes may be generated by analyzing

the ideal geometry of a laminated beam.

1.1.2 Quasi-static Loading

A major concern over the past decade has been with the response of a composite structure

subjected to foreign object impact damage (FOD). This includes the extent of damage in a

composite structure resulting from FOD and its residual strength. In trying to solve this

problem, a better understanding of the contact phenomenon resulting from an impact load is

needed. There are various types of applied Ioadings which can produce damage in a com-

posite structure depending on the impact velocity, dimension and shape of the foreign object,

and the relative hardnesses of the two contacting bodies. The failure mode and extent of

damage strongly depends on the contact force which is imposed on the composite structure.

The field of impact dynamics generally" deals with small diameter objects and high velocity

impactors, e.g., projectiles, where the duration of impact is small compared to the structure's
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period of natural vibration. For this type of loading, the transient response of the structure is

required and the propagation of stress waves must be considered. The damage resulting from

high velocity impacts is generally very localized and concentrated near the contact area.

The experimental determination of dynamic contact forces is difficult because of the wide

range of load parameters and penetration effects. However, for low velocity impacts involving

large diameter objects, the damage due to impact can be simulated using a quasi-static

loading which is easier to monitor and control in a test environment. If the duration of impact

is long compared to the structure's period of natural vibration, the local deformations occur

elastostatically and elastodynamic effects can be neglected. In this case, a quasi-static load-

ing can be applied to the structure and the results of a static analysis will accurately represent

the local stresses and structural response in the neighborhood of the contact area for this kind

of loading. An experimental investigation based on quasi-static loading was performed by

Yang and Sun [1] which resulted in a static indentation law for composite laminates. This was

an empirical approach which modelled the experimental data by power laws. For a special

case of the Hertz contact problem, where a rigid isotropic sphere is in contact with an elastic

isotropic half-space, the contact force is proportional to the indentation raised to the 3/2 power

[2],

F -- kan (1)

where n= 3/2, F is the contact force, = is the indentation, and k is the proportionality constant

which depends on the properties of the contacting bodies. Yang and Sun's results showed

that n=3/2 was also valid for a graphite/epoxy laminate and a steel indenter. Subsequent

work by Tan and Sun [3] used this static indentation law for an impact analysis of a laminated

composite plate. Based on their experimental results and comparisons with a dynamic finite

element analysis, the static indentation law was shown to be valid for low velocity impacts.

A quasi-static approach was also used by Schonberg, Keer, and Woo [4] for studying low ve-

locity impact of transversely-isotropic beams and plates. In addition, C. C. Poe Jr. [5] simu-
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latedlowvelocity impact damage in a thick graphite/epoxy laminate using quasi-static loading

conditions.

1.2 Objectives

The present investigation is concerned with simulating low velocity impact loading on a com-

posite structure using a quasi-static approach. The problem under consideration treats the

composite structure as a model problem using a laminated beam for the analysis and exper-

iments. The beam is finite in length (see Figure 1) and consists of a specified lamination

containing layers which are either monoclinic, orthotropic, transversely-isotropic, or isotropic.

The applied load is located at the midspan and is representative of the contact stress distrib-

ution resulting from static indentation. In comparison to the Hertz problem, the contact is

between a rigid cylinder and a layered elastic beam. Damage states in laminated beams

produced by a quasi-statically applied load are studied by conducting experiments on three-

point bend specimen geometries.

The major objective of this investigation is to develop a better understanding of damage states

and the damage susceptibility of laminated three-point bend specimens under quasi-static

loading. A structure's susceptibility to damage is a measure of how easily damage is induced.

Once damage is present in a structure, the question of how well it is tolerated with regard to

ultimate failure needs to be addressed. Therefore, the objective of the present study also in-

cludes the investigation of a laminated beam's tolerance to damage. As mentioned above, the

approach selected is a combination of theoretical and experimental research. The objective

of the theoretical portion is to develop the necessary analytica! tools for determining sub-

laminae stress states near points of concentrated loading and study the effects of stacking

sequence, specimen geometry, and boundary conditions on the local stress distributions. For
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Figure 1. Laminated beam geometry.
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the experimental phase of the research, the objective is to identify damage modes from an

extensive testing program. The initial damage is defined to occur when the laminated beam

first experiences a reduction in load carrying capacity. The test matrix covers a wide range

of specimen thickness to length and thickness to supporl-span ratios, and various lamination

sequences. Subsequent correlations between the observed local damage in the test speci-

mens and their corresponding damage initiation loads with predicted sub-laminae stress dis-

tributions are made.
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Chapter II

Literature Review

Several investigative tools are required to study the damage produced by low velocity impact

in composite laminates using a quasi-static approach. Different ways of treating the boundary

conditions and applied Ioadings, and different solution procedures may be considered in de-

veloping a theoretical model for analyzing laminated beams. Analytically, the solution should

provide the stress distributions and displacements in a laminated beam, both globally and

locally in the vicinity of the applied load. Experimentally, the descriptions of damage and the

changes in damage modes for different beam geometries should be investigated. Based on

the analytical stress distributions corresponding to an experimentally measured load and

correlation with observed damage states, a better understanding of the initiation of damage

and damage susceptibility in composite beams subjected to a quasi-static load can be ob-

tained.
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2.1 Stress Analysis

The stress distributions and displacements in a composite beam which is subjected to a con-

centrated load have been determined by past researchers using various techniques and ap-

proximations, To obtain local and interlaminar stresses composite beams must be considered

as layered media and a ply-level analysis must be performed. Global responses can be ob-

tained by modelling the beam as being homogeneous with anisotropic properties. An over-

view of the approaches taken can be divided into three categories. Analytical techniques in

the mathematical theorj of elasticity are the foundations ior one approach. The second ap-

proach is based on numerical techniques for solving the elasticity equations, such as the finite

element method or finite differences. The last approach which has been used is an extension

of classical laminated plate theory to the problem of a beam in bending. Whichever approach

is used, solutions to problems associated with concentrated loads in the form of a point or line

load must deal with a singularity at the contact point. However, a point load is an idealized

case, whereas, the actual test conditions correspond to some type of distributed load. The

determination of the applied loading distribution requires an investigation of the contact

problem for anisotropic bodies.

2.1.1 Analytical Techniques

2.1.1.1 Problem Formulation

Elasticity solutions to two-dimensional problems are either based on a displacement formu-

lation or expressed in terms of stress functions. The displacement formulation is used for

solving a class of boundary-value problems where the displacements are prescribed on the
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surface of an elastic body. The resulting internal stresses and displacements at every point

in the body are found by solving the system of Navier's equations. The governing Navier's

equations [6] are obtained by expressing the equilibrium equations in terms of displacements.

For this class of problems, compatibility is satisfied by the assumed form of the displacements.

A second class of boundary-value problems in elasticity is considered when the applied

tractions are given on the surface of the body. The governing equations are the Beltrami-

Mitchell equations [6] formulated in terms of stresses. A stress function is defined in terms

of the stress components which identically satisfies the equilibrium equations. Since not ev-

ery solution to the equilibrium equations will satisfy compatibility, the compatibility equations

are employed to derive the governing differential equations.

Three analytical techniques which have been used to solve boundary-value problems in

elasticity are: series expansions, transform techniques (both finite and infinite), and influence

function techniques. In general, exact elasticity solutions using the above techniques only

exist for ideal geometries and usually involve infinite regions. For example, a Fourier series

expansion or Fourier transform technique works for rectangular geometries. Finite bounda-

ries are often treated by making approximating assumptions and both homogeneous and

layered media can be considered. For a laminated beam, anisotropic elasticity solutions are

obtained for a single layer and then continuity of tractions and displacements at the interfaces

are imposed.

2.1.1.2 Influence Function Approach

Influence function techniques result in the reduction of the problem to a system of integral

equations in terms of some unknown variable, e.g., distribution of tractions. This was the

approach used by Benjumea and Sikarskie [7] to solve several problems in plane orthotropic

elasticity. The solution for a plane orthotropic region subjp.cled to surface tractions was for-

mulated using two different influence (Green's) functions, i.) functions which were defined to
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besingularon theboundary,ii.) functions which were singular in the interior, both of which

are only known for simple regions. Fredholm integral equations of the first kind were obtained

when singular functions on the boundary were considered. For isotropic materials these are

easily converted to the second kind which is the form suitable for numerical calculations.

However, for the case of orthotropic materials, this is much more difficult and singular func-

tions in the interior were considered. The major limitation of this approach is that it is difficult

to obtain the influence functions for complicated geometries.

Rizzo and Shippy [8] determined the stress distributions in an orthotropic body using the

modified potential theory and an adaptation to anisotropic elasticity. They used Green's sol-

ution [9} to the governing field equations of plane anisotropic elasticity and then coupled this

with a desired solution corresponding to the given boundary conditions through Betti's recip-

rocal theorem [6}. For a well posed mixed boundary value problem, this produced a singular

vector integral equation defined on the boundary of an arbitrary orthotropic body. Once this

integral equation was solved for the unknown boundary tractions and/or displacements not

initially prescribed, the displacement field was obtained by a boundary integral of the

$omigliana type (Love [10]). Numerical results were presented for the problems of an ellip-

tical inclusion in an infinite matrix, an infinite orthotropic plate with a hole subjected to

hydrostatic pressure, and an orthotropic ring subjected to uniform shear on its inner boundary

and a fixed outer boundary.

In contrast to the biharmonic formulations of elasticity, deriving a system of integral equations

is not limited to two-dimensional stress states and is easily applied to multiply-connected

domains, e.g., inclusions. If numerical techniques are used in the integral equation method

then it has an advantage over a finite element formulation in that it produces a system of al-

gebraic equations which is of lower order. This is because the equations are applicable on

the boundary of the region being considered and not in the interior. However, the coefficient

matrix is not banded as in the case of the finite element method and the techniques used for

solving banded systems of equations cannot be applied. Only single-layered beams were
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analyzed in References [7] and [8] and numerical integration techniques are generally re-

quired when more complicated geometries are being considered. Therefore, to perform a

layered analysis for an arbitrary laminated beam by solving a system of integral equations

would be computational inefiqcient.

2.1.1.3 Stress Function Approach

Many types of problems in the mathematical theory of elasticity have been solved for isotropic

materials using stress functions. This generally involves the use of Fourier series for periodic

loading and Fourier integrals for nonperiodic loading with harmonic functions. The distribution

of shear stresses in unidirectional composite beams under three-point flexure was studied by

Tarnopolskii, et al [11] using a stress function approach, taking into account the local effects

of loading and anisotropy. The assumed form of the stress function satisfied the boundary

conditions around a rectangular region cut-out from an infinite half-plane. Solutions were

obtained for homogeneous isotropic and anisotropic regions, and comparisons were made

between the two. Results of Reference [11] showed that the shear stress profile through the

thickness for the anisotropic case differed considerably from being parabolic. Also, the results

showed that by increasing the span length-to-depth aspect ratio of an anisotropic beam the

maximum shear stress was reduced and the location was shifted toward the mid-plane, x=0

(see Figure 1). Furthermore, the maximum shear stress was shown to increase if the stiffness

of the material in transverse tension/compression was increased.

Conway [12] studied several problems for orlhotropic plane stress using the Airy's stress

function and made analogies with the isotropic cases. In particular, he analyzed a deep beam

using a doubly infinite system of equations. The final solution to this set of equations was

shown to be similar to Timoshenko's bending of a uniformly loaded clamped rectangular plate.

Kasano, et al [13] extended Conway's work [12] for a two-dimensional Fourier series elasticity

analysis of an orthotropic beam under three-point bending. The concentrated loads and sup-
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portswere represented by a uniform stress distributed over a small length using a Fourier

series, and hyperbolic functions represented the through the thickness part of the solution.

A similar approach was used by Whitney [14] for a finite length, single layer orthotropic beam

under three or four-point bending. The unknown constants in the expression for the stress

function were determined from the boundary conditions and interracial continuity. The

boundary conditions were exactly satisfied on the top and bottom surfaces but the bending

stress conditions on the ends of the beam were only approximately satisfied. Sullivan and

Van Oene [15] considered the case of a generally orthotropic beam, i.e., unidirectional with

off-axis fibers, under plane stress conditions. This was based on Whitney's work [14] where

the stresses were derived from a stress function which satisfied the orthotropic analogue of

the biharmonic equation and a Fourier series representation.

Kasano, et al [16] also investigated solutions to two-dimensional orthotropic elasticity prob-

lems using stress functions but in the form of Fourier integrals. Kasano considered the

problem of an infinitely long orthotropic beam subjected to a concentrated load. In general,

a singular point exists at the location of a concentrated load and the solution is in terms of

divergent integrals. However, by using a transformation of coordinates and superimposing the

solution for an orthotropic half-plane subjected to a concentrated load, a solution was ob-

tained as the sum of a closed form integral and a convergent integral. The boundary condi-

tions were satisfied by using the method of Fourier transforms to determine the form of the

stress function. Yu [17] studied the local effects of a concentrated load applied to an infinitely

long orthotropic beam by also considering an integral form of Airy's stress function. The

problem of an infinite beam in bending was solved using superposition of the Boussinesq-

Flamant problem for an infinite-half orthotropic plane under a singular load with the problem

of an infinite strip cut out of:the half-plane. The solution of the Boussinesq-Flamant system

with reverse loading was superimposed on the bottom surface of the infinite strip. The

boundary conditions were represented by Fourier integrals and consequently the solution was

also in terms of Fourier integrals.
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It was stated previously that Airy's stress function can be expressed in terms of Fourier series

or Fourier integrals depending on the periodicity of the applied loading. A polynomial Airy's

stress function was shown by Rao [18] to be suitable for analyzing rectangular laminated

beams under a polynomial type of loading. The beam had clamped-clamped boundary con-

ditions and each layer was assumed to be specially orthotropic in a state of generalized plane

stress. The effects of relative stiffness and thickness of layers, boundary conditions, and

continuity conditions at the interfaces were investigated.

Various solution procedures have been discussed using the stress function approach in the

mathematical theory of elasticity. The primary limitation in applying these approaches to the

problem of an arbitrary laminated beam subjected to three-point bending are the ideal ge-

ometries previously considered and the assumed boundary conditions. Solutions have been

obtained for infinite strips or layered infinite regions. Finite geometries have been modelled

by a rectangular cut-out region of an infinite half-plane or for only a single layer. Also, none

of the approaches for a layered medium take into account the local effects of the support re-

actions.

2.1.1.4 Displacement-based Solutions

The problem of determining stresses and strains in an isotropic beam of rectangular cross-

section under any system of load when the problem could be reduced to two dimensions was

thoroughly investigated by Filon [19] using a Fourier series expansion. A displacement for-

mulation was used where the solution to Navier's equations was expressed in terms of un-

known functions. The unknown functions were then determined using a Fourier series

expansion in terms of hyperbolic and circular functions. The Fourier transform technique is

based on transforming the governing differential equations, e.g., Navier's equations

(Chatterjee, et al [20] ), to the Fourier domain using the Fourier transform. Expressions for the
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stresses and displacements are obtained in the transformed domain and then transformed

back to the real domain.

An exact solution within the framework of linear elasticity was obtained by Pagano [21] for the

problem of cylindrical bending of a laminated plate. Orthotropic layers whose axes of material

symmetry were parallel to the plate axes were considered and a state of plane strain was

assumed. The plate was simply-supported on the ends and a normal traction was applied on

the upper surface. Results were compared with classical lamination theory (CLT) and it was

shown that for large aspect ratios CLT converged to the elasticity solution. A more general

type of loading, which included approximating a point load by a uniformly distributed load over

a small finite distance, was considered by Pagano and Wang [22] using the cylindrical bending

model along with a Fourier analysis. The effect of shear coupling in cylindrical bending of an

anisotropic laminated plate was also investigated by Pagano [23]. For general conditions of

material symmetry, a state of plane strain cannot exist and a generalized plane deformation

analysis was used. As discussed by Leknitskii [24], none of the six stress components vanish

identically for this material state. The solution was obtained using a displacement formulation

where a displacement field was assumed which satisfied the governing field equations and the

the boundary conditions. The governing differential equations were then derived from the

equilibrium equations using the constitutive and strain-displacement relationships. Applying

the problem of cylindrical bending to the problem of a laminated beam subjected to three-

point bending is limited by the assumed boundary conditions. The ends of the beam, i.e., x=0

and L (see Figure 1), are assumed to be simply-supported along the entire end-face of the

beam from z=-h/2 to z=h/2, and the resultant shear force at the ends of the beam, i.e., the

integral of the _r,=shear stress distribution through the thickness at x=O and L, maintains

global equilibrium with the applied loading on the top surface. Consequently, overhang effects

and the effects of supporting the beam on the bottom surface cannot be considered.
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2.1.2 Numerical Approaches

2.1.2.1 Finite Element Method

An alternative to the analytical approaches discussed in the previous sections is to use nu-

merical methods to solve the governing elasticity equations. The finite element method was

used by Berg, Tirosh, and Israeli [25] to study the validity of the ASTM D 2344 short beam

shear test (SBS) for composites. This standard test was designed for isotropic beams and is

based on Bernoulli-Euler beam theory. Classical beam theory predicts a parabolic through-

the-thickness shear stress distribution and the standard test assumes the failure to be domi-

nated by this stress component. Therefore, the measured load at which fracture occurs

determines the interlayer shear strength of the material. A finite element analysis was per-

formed in Ref. [25] for a unidirectional beam having a span length-to-height aspect ratio, a/h,

of four using an orthotropic elastoplastic continuum model. The fibers were oriented parallel

to the x-axis (see Figure 1). The contact force was assumed to be a uniformly distributed

traction over a small arc length, d. The results of this investigation showed that the actual

in-plane shear stress distribution, T_, does not differ much from beam theory at a location

midway between the support and the loading nose. However, classical Bernoulli-Euler beam

theory does fail to properly describe the distribution and location of maximum shear stress

on planes closer to the contact point. The results presented also predicted a large transverse

compressive stress, _=, which causes fracture to take place under conditions of combined

compression and shear in the vicinity of the loading nose. Consequently, the measured frac-

ture load cannot be used in determining the shear strength of the material because this is not

a pure shear failure. In some cases, large compressive bending stresses, _, were predicted

under the applied loads which could produce a pure compression dominated failure in the

form of fiber microbuckling.
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2.1.2.2 Finite Differences

Sandorff [26] studied St. Venant effects in orthotropic beams using the finite difference method

to determine stresses and displacements. He considered a state of plane stress and used a

stress formulation approach where the equations of equilibrium were identically satisfied by

defining an Airy's stress function. Invoking compatibility for a two-dimensional stress state

resulted in a biharmonic equation to solve for the Airy's stress function. The governing

biharmonic equation for the plane problem of orthotropy was shown by Mitchell [27] to have

the same form as the biharmonic equation of the plane isotropic problem. The differential

operator was equiva!ent to the isotropic problem but in the orthotropic case the constant co-

efficients were different. In Reference [26], the solution to the biharmonic equation was ex-

pressed as a boundary value problem for an orthogonal matrix of interior points and then

relaxation techniques were applied. The elasticity equations and constitutive relations were

then expressed in finite difference form to find the stresses and displacements. Only

unidirectional beams having fibers parallel to the x-axis (see Figure 1) were analyzed. How-

ever, as stated in Reference [26], for many cases the same approach applies to multi-ply

laminates if the behavior is approximated by assuming the beam to be homogeneous, spe-

cially orthotropic. The external load was expressed by a triangular load distribution using a

3-term finite difference approximation. The results for the transverse stress, i.e., _=, directly

under the external load were shown to be about 15% higher than that predicted from the

Boussinesq-Flamant relation [28] for a semi-infinite region. The through-the-thickness dis-

tribution for the shear stress, "r,= , at a cross-section adjacent to the loading, showed the

maximum value to be located just below the top surface of the beam. This was a severe de-

viation from the parabolic shear stress distribution obtained from Bernoulli-Euler beam theory.

Also, the bending stress, o,=, distribution through-the-thickness was shown to have a large

deviation from beam theory with a peak compressive value approximately three times greater.

The stress distribution results presented in Reference [26] showed that St. Venant effects were

more important in composite materials. If the net-section warpage was large and
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unrestrained, the bending stress varied linearly through the thickness, and if warpage was

restrained the distribution was nonlinear. Overhang effects were also studied for short beam

shear specimens, concluding that too short of an overhang would result in beam failure before

the fracture load associated with the interlayer shear strength of the material was reached.

Consequently, the stress state was not dominated by the shear stress and the failure mode

was not due to pure shear. This result was based on the net bending moment being zero at

the support and in the overhang but the constraint against warpage provided by the overhang

together with the introduction of a reaction load at the support caused local disturbances in

the normal and shear stress distributions. This type of behavior acted to increase the beam's

effective stiffness.

The numerical techniques discussed above illustrated the St. Venant effects in composite

beams and the shortcomings of classical beam theory for calculating stresses. In comparison

to an isotropic beam, the stress concentrations resulting from the applied loading and sup-

ports extended over a larger portion of the beam. However, only unidirectional homogeneous

orthotropic beams under plane stress conditions were considered. As previously discussed

for numerical evaluation of a system of integral equations, using these methods to perform a

layered analysis would be computationally inefficient and not recommended due to the large

finite element mesh or finite difference grid required.

2.1.3 CLT Approaches

Whitney, et al [29] analyzed the flexural test specimen for laminated composite materials by

considering the beam as a special case of a laminated plate. Assumptions were made based

on classical lamination theory and a pure bending type of loading was applied, i.e.,

M,=f=0, M r = M,_ -- 0 (see Figure 2). For beams having a large length to width ratio, a/b, it was

assumed that the component of displacement in the z-direction depended only on the x-
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coordinate, i.e., w=w(x). The work of Reference [29] basically dealt with defining the bending

properties of composites for simply-supported beams under three or four-point bending. The

effects of transverse shear.deformations were included and a shear correction term was de-

fined which was equivalent to the correction term in Timoshenko beam theory. Accounting for

transvere shearing deformations provided additional beam deflections and made the beam

less stiff, which was shown by Whitney and Pagano [30] to be important for composite beams

in three-point bending. The beam's stiffness was calculated using homogeneous isotropic

beam equations which were modified to account for stacking sequence. This was analagous

to Pagano's work [31] where he concluded that layered beams in which plies were oriented

symmetrically about the midplane and the orthotropic axes of material symmetry were parallel

to the beam edges, i.e., 0• or 90° plies, could be analyzed by classical beam theory with the

bending stiffness El being replaced by an equivalent stiffness using an effective bending

modulus. The effective bending modulus was a function of stacking sequence and depended

on the DI/terms defined by lamination theory. Similar results were obtained by Adams and

Miller [32] for the influence of transverse shear in hybrid composite materials. The analysis

used by these authors was also derived from classical laminated anisotropic plate theory with

an extension to include effects of transverse shear in the three-point beam bending problem.

The approach was based on an approximate method developed for thick laminated plates

having an assumed displacement field corresponding to the conditions of cylindrical bending,

i.e., plane strain in the xz-plane with applied transverse tractions being constant in the y-

direction. The laminates were assumed to be symmetric and when off-axis plies were in-

cluded the DI, and Da terms were assumed to be small and neglected for simplications. Also,

for the case of a generalized plane strain analysis the three strain components, R,, Yy=,Y_, were

neglected. The presented results included beam deflections, flexural moduli, flexural energy

and shear strain energy. The transverse shearing stresses were shown to have a predomi-

nant effect on the flexural modulus and the strain energy. It should be noted that the highly

anisotropic nature of composite beams causes them to be more dependent upon transverse

shearing stresses when subjected to three-point flexure than similarly loaded homogeneous
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isotropic beams. The major limitation of a CLT based approach is the beam or plate theory

solutions presented above cannot model the local effects due to transversely applied loads.

2.1.4 Contact Problems

2.1.4.1 Isotropic

In order to accurately describe and understand the possible damage states in a composite

beam, the actual stress distribution and deformations under the loading nose and at the sup-

port points must be investigated for prescribing the boundary conditions in the analytical

model. Hertz [2] in 1881 determined the stresses produced when two smooth bodies are

pressed together. He solved this problem for the case of isotropic bodies by making suitable

approximating assumptions and applying some known results of potential theory. The basic

Hertz problem has been predominantly utilized for isotropic bodies where the elastic contact

stress problem has been defined to be Hertzian if:

1. Bodies are homogeneous, isotropic, obey Hooke's law and experience small strains and
rotations.

2. Contacting surfaces are frictionless

3. Dimensions of the deformed contact patch remain small compared to the principal radii
of the undeformed surfaces.

4. Deformations are related to the stresses in the contact zones as predicted by the linear

theory of elasticity for half-spaces.

5. Contacting surfaces are continuous, and may be represented by second degree
polynomials prior to deformation.

2.1.4.2 Anisotropic

For anisotropic bodies, the basic Hertz problem was not considered for many years presum-

ably because it could not be reduced to a potential theory problem except for the transversely
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Figure 2. Laminated plate subjected to in-plane loading.
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isotropic case. Sveklo [33] showed that a Hertzian approximation for a transversely isotropic

body produced a normal component of surface displacement due to a concentrated normal

load which was inversely proportional to the radial distance measured from the load point.

Green and Zerna {9] studied the two-dimensional anisotropic contact problem for the case of

indentaton by a rigid punch. Willis [34] considered the Hertz problem for generally anisotropic

bodies using the Fourier transform method. The functional form of the pressure distribution

between the bodies was found explicitly and determination of the resulting displacements

was reduced to numerically evaluating contour integrals. For isotropic bodies, Hertz reduced

the problem by the semi-inverse method of assuming that the contact area was an ellipse with

an elliptical pressure distribution. This type of distribution was known to give the correct form

of displacements according to potential theory. Willis {34] showed that by assuming an ellip-

tical distribution for the general case of anisotropy the correct form of displacements could

also be obtained. Chen [35] also assumed Hertzian contact to find the stresses in anisotropic

materials due to indentation. He showed that in certain important practical situations the

stress functions for isotropic and for anisotropic materials were of the same form. Conse-

quently, the expressions for the pressure distribution underneath the punch were independent

of the material properties of the half-space. For the anisotropic case it was shown that the

stress distributions inside the body were generally not symmetric even though the external

loading was. Chen presented results in the form of maximum shear stress contours where the

largest value occurred on the axes of symmetry at a depth of approximately 4/10 the contact

width for the case of isotropy. Conversely, for anisotropic materials the largest value did not

necessarily lie on the axis of symmetry.

Another solution for plane anisotropic contact problems was developed by Miller [36] using

the Green's function approach. The problem was assumed to be for two anisotropic cylinders

in contact and included the effects of sliding friction. The method used was based on complex

variable techniques in elasticity and the solution was expressed in terms of piecewise analytic

functions. This was a mixed boundary value problem due to the contact between two
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anisotropic bodies. The solution obtained included the displacements corresponding to the

singular solution of a concentrated force in an anisotropic half-plane. Sankar [37,38] derived

an approximate Green's function for the surface displacements in an orthotropic beam by

superposition of the half-plane solution and beam theory. For small contact lengths he as-

sumed that the contact stress distribution was elliptical, i.e., Hertzian. A relationship between

the contact force and contact length was derived and was seen to be significantly affected by

the curvature of the deflected beam. Therefore, this relationship was revised by considering

contact between two curved bodies. In his approach, elasticity equations were used to de-

scribe the local behavior and beam theory was used for the global behavior. The Young's

modulus, El controls beam behavior with the 1-direction corresponding to the beam axis,

whereas, E2 controls local deformations with the 2-direction corresponding to the direction of

the applied contact force. Consequently, for small Ez/E1values the local indentation dominated

and the deviation from the Hertzian solution was small. Inclusion of shear deformations in-

creased the contact area for a given contact force but reduced the amount of indentation, i.e.,

shear deformations added to the beam bending effects. Similar effects were seen for higher

length to width ratios.

2.2 Damage Descriptions

Failure mechanisms and damage due to either static bending or low velocity impact have

been investigated by several authors for the case of simply-supported composite beams. Two

distinct modes were reported by Parry and Wronski [39] as failure mechanisms in

unidirectional carbon fiber composite beams. One was a tensile mode which resulted from

fiber breaks and debonding. The second was a compression mode combining fiber shear

and/or buckling with compression creases or kinking. Kinking is a mechanism of transverse

deformation where shear takes place initially parallel to the principal stress axis. Kink bands
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generally develop in a diagonal fashion from rotation and failure of fibers by buckling, and

eventually lead to the formation of interlaminar cracks.

Shih and Ebert [40] defined flexural failure mechanisms for unidirectional glass/epoxy beams

under four-point bending. A flexural tensile mechanism was described by fiber pull-out,

transverse matrix cracking, and longitudinal matrix cracking. Microbuckling of fibers was the

predominant flexural compressive mechanism. A tensile failure due to flexure was associated

with a strong interracial shear strength, whereas, a poor inter/acial shear strength led to a

shear failure mode. It was also noted that the dependence of interlaminar shear strength on

interracial shear strength was larger than that of the longitudinal compressive strength which

in turn was larger than that of the longitudinal tensile strength.

Two different failure modes were identified by Tarnopolskii, et al [11], for three-point bending

of a composite beam made of glass-plastic materials. One was layer separation and the

second was peeling of surface layers within the compression zone followed by global fracture.

This was said to be caused by a local loss of stability with an accompanying breakdown of the

polymer interlayer.

The effect of tiber orientation on the impact strength of off-axis composites was studied by

Mallick and Broutman [41]. The material system was E-glass/epoxy and both static and dy-

namic flexure were considered. The static results indicated a "lift-off" phenomenon in off-axis

specimens, i.e., as the load increased the specimens twisted which lilled the corners off the

supports. For the dynamic flexure tests, the progression of damage was described by cracks

initially forming parallel to the off-axis fibers causing the 17' fibers to break which eventually

led to failure.

Greszczuk and Chao [42] investigated low-velocity (FOD) impact-damage in graphite fiber re-

inforced composites using a quasi-dynamic approach. This approach involved determining

the time-dependent surface pressure distribution under the impactor, time-dependent internal
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stresses in the target caused by the surface pressurel and failure modes in the target caused

by the internal stresses. Analytical studies were performed for different material systems to

determine the influence of fiber and matrix properties on the impact response. A failure cri-

terion based on distortional energy theory showed that the matrix properties strongly influ-

enced the extent of damage and a high strength, low modulus matrix was required to minimize

damage, In general, thin laminates failed on bottom due to bending stresses and thick lami-

nates failed near the top due to contact stresses. Greszczuk also concluded that an accurate

determination of the damage zone required a multi-layer heterogeneous orthotropic analysis.

Browning et al [43] performed an SEM investigation on a thick 50-ply short beam shear (SBS)

specimen made of A$-1/3502 graphite/epoxy, and tested with a span length-to-depth aspect

ratio of 4. The failure surface was characterized by resin deformation and microcracking. The

failure surface features of the resin deformation were similar to fracture surfaces related to

interlaminar failure. The microcracks appeared predominately at the fiber-resin interface,

circumferentially surrounded the fiber, and radiated out into the matrix. Short beam shear

tests were also conducted for thin 16-ply beams of the same material and aspect ratio and the

test specimens consistently failed in a non-shear dominated mode. The only evidence of

damage was local indentation under the loading nose. Therefore, it was concluded that al-

though the SBS test is widely used for characterizing interlaminar failure and measuring

"apparent" interlaminar shear strength, thin unidirectional beams usually do not fail in this

manner and thick specimens or alternative test procedures must be used.

2.3 Summary

To investigate low velocity impact damage in composite beams using a quasi-static approach

the knowledge of local stress states and an understanding of failure mechanisms is required.
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The review of published work by previous researchers indicated shortcomings in their ap-

proaches which resulted in the inability to accurately and efficiently predict the stress distrib-

utions in a finite length laminated beam which contained ofT-axis layers. Primarily, solutions

for homogeneous and/or infinite regions were developed which cannot predict ply-level stress

distributions nor account for end-face boundary conditions associated with a finite region. For

a layered analysis the numerical techniques required in using an influence function approach

or finite elements are computationally inefficient. However, the distribution of stresses in a

three-point bend specimen having an arbitrary lamination sequence and a finite length can

be obtained by combining different aspects from several of the previously discussed analytical

approaches. In the following Chapter, Whitney's solution [14], which was developed for a finite

length orthotropic unidirectional beam and included the reactions at the support points, is

extended to the case of a laminated beam. To properly account for the presence of off-axis

plies in the lamination sequence, the stress-function based plane strain solution in [14] is

modified for a state of generalized plane deformation. This approach parallels Pagano's

displacement-based cylindrical bending analysis [23] which had the shortcoming of requiring

the beam to be simply-supported only at the ends, i.e., no overhang. The concentrated loads

located at the three contact points are modelled by assuming Hertzian contact, e.g., an ellip-

tical distribution over the contact length, instead of the uniform distribution assumed in [14]

and [23]. Once the stresses are known and experiments have been conducted to ascertain

the location and type of damage, a correlation study between the theoretical and experimental

results can be performed. The results of the correlation study should provide a better

understanding of damage in laminated composite beams.
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Chapter II!

Analytical Procedure

3.1 Introduction

The determination of stresses in the interior of an elastic body when the tractions are specified

on the surface of the body is a well defined problem in the theory of elasticity. The

boundary-value problem being considered is illustrated in Figure 3, where the tractions,

T_J(x), are given on the surface of the body S. and the body force, F(x), is given in the interior

of the body. The governing equations are:

Equilibrium:

_r_jj + Fj = 0 (1)

Constitutive relationship:

elj = C_jkl¢k, (2)
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Strain-Displacement:

1
"v= T (u_j+ us,i) (3)

Compatibility:

"lJ,kl -I- ¢kl,ij -- ¢IkJl -- Cjl,lk = 0 (4)

In using a stress formulation approach, a stress function or functions can be defined which

will identically satisfy the equations of equilibrium. However, not every solution to the equi-

librium equations will satisfy compatibility and the compatibility equations must be employed.

The governing equation or equations are obtained by substituting the constitutive relation-

ships into the compatibility equations and simplifying the expressions using the equilibrium

equations.

Since one can always find a particular integral to the inhomogeneous equations when Fi=_ 0

and since the equations are linear, assume that a particular solution is known and set F, =

O. For the case of isotropic bodies and a two-dimensional stress state, the equations of

equilibrium are identically satisfied by defining an Airy's stress function, U(x,z), as follows:

_2U(x,z) _2U(x,z) _2U(x,z)
(5)

-- °zz -- "rxz= _x_zaxx C_Z2 _X 2

The problem can then be reduced to the fundamental biharmonic boundary value problem of

finding U(x,z) such that:

V4U = 0 in _t (a)

U, ,, = f,,(S) are given on C (b)
(s)

where C is the part of boundary S where the tractions are prescribed. For the case of

anisotropic bodies and general conditions of material symmetry (see Lekhnitskii [24]) equation

(6) is no longer valid and a second stress function must be defined. In the case of a laminated
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Figure 3. First fundamental boundary.value problem in elasticity.
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medium the solution to this problem is applied to the individual layers and continuity of

tractions and displacements at the interfaces is imposed.

Pagano [21,22,23] has derived plane strain and generalized plane deformation elasticity sol-

utions for the cylindrical bending problem using a displacement formulation. However, the

assumed form of the displacements cannot be used in cases where the ends of the beam are

allowed to extend beyond the supports. In the cylindrical bending problem the simple sup-

ports are approximated by the particular boundary conditions that Pagano uses and the re-

sultant shear stress distribution on the end faces of the beam maintains global equilibrium

with the applied loading. Whitney's [14] approach includes the effects of an overhang but only

for a homogeneous single-layered orthotropic beam under plane strain or plane stress con-

ditions. In the present investigation a solution for an arbitrary laminated beam of finite length

is obtained by extending Whitney's previous development for plane strain to generalized plane

deformation in order to account for the possibility of including off-axis plies.

3.2 Solution for Monocfinic Layers

3.2.1 Governing Differential Equations

Following Whitney's [14] analysis and using a stress formulation, the prescribed tractions are

expressed by infinite Fourier series and the solution is obtained in terms of two nondimen-

sional stress functions. A state of generalized plane deformation in the xz-plane (see Figure

4) is considered in order to satisfy the three equilibrium equations for a monoclinic layer. For

the case of orthotropic, transversely-isotropic, and isotropic layers the solution reduces to the

form obtained by considering plane strain conditions.
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For the generalized plane deformation analysis, the three displacement components, u, v, and

w in the x, y, and z directions, respectively, are assumed to be only functions of the in-plane

coordinates, x and z.

u = u(x,z)

v = v(x.z)

w = w(x,z)

(7)

Consequently, the only vanishing component of strain is _ and a_, can then be expressed in

terms of the other stress components. This results in a reduced 5 x 5 compliance matrix

similar in form to the plane strain reduced compliance matrix and the constitutive equations

become:

_x Rll R13 0 0 R16 Oxx

{,z} L0rR13R33 0 0 R36-]{'Crzz'_,yz =/0 0 R44R" o/,;'yz P
Yxz 0 R4s Rss 0 JLTxz.]

Yxy Rle R36 0 0 R66 Txy

(8)

where R_j are related to the transformed compliances as follows:

_2Sj2 ij = 1,3,6R,j= s- 2

R45 = $45

R55 = $55

(9)

This resulting constitutive relationship now reflects the shear coupling between the in-plane

normal strains and the out-of-plane shear stresses. It should also be noted that none of the

stress components vanish identically. For the case of plane stress in the x-z plane, R,I is

simply replaced by _1, the transformed compliance matrix.

The six components of stress are functions of x and z only, and the three equations of equi-

librium become:
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aoxx aTxz
+ -0

ax Oz

aTxy aTyz
+ --0

aX OZ

O_xz aOzz
+ -0

8x az

(10)

These equations are identically satisfied by defining two nondimensional stress functions, (1)

and _, as follows:

R a2d) a2d) a2_
(11)

T:x- at/ _x,t =- o-'T

The nondimensional stresses in equation (11) are defined as:

bh 2 bd bh
o_=-_-a_xx o,T=To= _,_,,=T_-= (12)

bh bL
•_x= T'_,y Tx_=-F- Tyz

and the nondimensional coordinate system is defined to be:

x z Y
= _-" _/= _- Z = _ (13)

The Cartesian coordinate system used and beam dimensions are shown in Figure 4 and the

remaining nondimensional quantities in the above expressions are:

d a L (14)#=-C s=_ R=--h-

A direct consequence of the generalized plane deformation formulation is that two of the

compatibility equations are not identically satisfied. Using the differential operator notation
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given by Lekhnitskii [24], the resulting governing coupled partial differential equations are

given by:

L4(_ + L3_ -- 0 (a)

L3_ + L2_P = 0 (b) (15)

where the differential operators are defined as:

(34
L4 = Rll R4 _ + (2R13 + R55)R 2 + R33

a,14 a_2a,/2

L3 = R16R3 + (R36 + R45)R
a_3 a_2a_

8..._2_2 82
/-2 = R66R2 Jl-R44

C_/2

a'

a_ 4

(16)

Note, that for an orthotropic layer, Rla, R_, and R= are zero, the _ differential operator van-

ishes and the two partial differential equations become uncoupled. This is also the case for

transversely-isotropic and isotropic layers. For monoclinic layers and generalized plane de-

formation, a sixth order partial differential equation is obtained by eliminating one of the stress

functions in equations (15a) and (15b), e.g.,

(L,L 2 - L2)d) = 0 (17)

It is easily shown that the second stress function, •, must also satisfy an equation having this

form.

3.2.2 Solution For Stress Functions

Solutions for the stress functions are found by assuming they have the form of a polynomial

plus an infinite series which is expressed in terms of an unknown function through the thick-

ness and a trigonometric function along the span. These forms are chosen in a way which
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allowsfor satisfaction of the governing partial differential equation and the applied traction

conditions. The solution for _ was given by Whitney [14] and is repeated here for the purpose

of clarity.

-2 2 3 oo

*(_,, 1t)= A o -'_¢ + Bo _ "F C o_ "t"_ gm(11)cos Prn_
m==l

(18)

where p,. = 2m_r , Ao,Bo, and Co are unknown constants, and g.,(_/) has the same form given

by Whitney but now involves a summation of six terms corresponding to the six roots of the

characteristic equation. Substituting this expression for the stress function into equation (17),

the solution for g,.(_/) is of the form:

6

gm(_1)= _'_Kmj( cosh ,t.j/Zm_/ + sinh ,_jlZrnrl) (19)

Prn

where /_ = _ and K,._ are unknown constants, and _'1are the roots of the following charac-

teristic equation:

-A). s + B). 4 + C,l.2 + D = 0 (2O)

where

A = R26 - RI1R66

B = 2Rls(R36 + R45) - R66(2R13 + Rs5) -- RllR44

C = R33Rss + R44(2R13 + R55) -- (R36 + R4S)2

D = - R33R44

(21)

Using the change of variable,

(22)

the characteristic equation is reduced to a cubic equation having the form:
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3y +r), +s =0 (23)

where

r _

s =

B 2 C

3A 2 A

2B 3 CB D

27A 3 3A 2 A

(24)

For most commonly used composite materials, the relationship

s2 r3
<0 (25)

is true and equation (23) will have three real and unequal roots. For materials having prop-

erties such that this quantity is positive the roots will be imaginary. If the quantity in equation

(25) is zero there will be repeating roots. The resulting values for the case of real character-

istic roots in equation (23) are:

yj = 2_/-_-cos{ 3 [_ + 2U- 1)Tr]} j = 1,2,3 (26)

where

1
2( -r)T

(27)

Substituting equation (26) into equation (22) results in six distinct characteristic roots occurring

in plus and minus pairs. By redefining the unknown constants, K,,j , to simplify the ex-

pressions when evaluated at the interfaces, i.e., _/= -t-l/z, the solution for g,,(_t) can be rewrit-

ten in the following form:
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3

Z( s tgm(_1)= Amj ,_jlzm + Bmj (28)
cosh_ sinh _j_m

j-1 2 2

where A.,t and B../are unknown constants.

The solution for the second stress function, _, can be found by assuming a form similar to

the first stress function which was given in equation (18), i.e.,

2 oo

_/(_, 11)= Do_ + Eo_1+ Fo "_- + _ hm(_1)cos pm_
rrl== J

(29)

where D., E., and Fo are another set of unknown constants. As stated previously, this function

must also satisfy a sixth order partial differential equation of the form given by equation (17)

and the solution for h,.(,/) can immediately be written as:

3

cosh ).j/_mr/ i- Dmj (30)
hm(_1)-- Cml _.il_m

cosh _ sinh )-j#m
j=l 2 2

where C.,I and D.,; are unknown constants and _.j are the same roots of the characteristic

equation determined previously. The two stress functions were shown to be coupled in

equations (15a) and (15b) and by substituting equations (18) and (29) into equation (15b) it can

be shown that the following relationships must exist between the unknown constants.

Cmj Lj PmCOth _'jlJrn= (31)
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'_j#m
Dml = Lj Pm tanh T AmJ (32)

R16 _o
Fo = -- -_.-_.,v o (33)

where

(R3,+ R,,-
Lj = R68A_ _ R44

(34)

3.2.3 Stresses

Now by substituting the nondimensional forms of the two stress functions given in equations

(18) and (29) into equation (11) the following expressions for the stresses in a monoclinic layer

can be found.

oo 3

R f _"_d_--_ 2 2I c°sh_'j#m_/ sinh_//_mtt / to,_ = _ B o + Col1 + #m_'J Arnj cosh_'JlZm + Bmj sinh _j_m COSPrn_
m--1 j--I 2 2

(35)

oo 3

o_t= _ Ao- p2m Arnj " + Bml : cosPm_
cosh _'//'t-------_m sinh )'l#m

m=-I i=1 2 2

(36)
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oo 3

I s !t p21j Amj + Bm/ _ sin Prn_

cosh _ sinh
m-1 h=l 2 2

(37)

oo 3

/"c_X= Eo R16 RCo_1+ ,_jl_rr,PmL] Amj + Bin} _ cos pm_(38)
- R6_- cosh )-;/_m sinh

m=l j=l 2 2

oo 3

sinh _'j/'/'mff cosh jl.j/J.mt'/

vx,l = _Do + p Amj + Bmj sin Pm_
cosh J'j/zm sinh )'i/_m

rn=l J=l 2 2

(39)

3.2.4 Displacements

Since this is a stress formulation, the corresponding displacement field is found by' integrating

the strains.

u(x.z) = f =xdX+ Uo(Z)

v(x,z) = J'y=ydx+ Vo(Z)

w(x.z) = f _zdz+ Wo(X)

(40)
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By expressingthe strains in terms of the nondimensional stresses, the equations for the

nondimensional displacement components are obtained as follows:

f( - )-- " R13 -- d_ + Uo(_1) (41)
5.(_, =1)= R 11RSo_ -I-'_- oft + R16R't_Z

_(_. '7)= RlsRSo¢-t--T % +
+vo(_) (42)

f( - )' R33 4- R'36"r_X d_/ + Wo(_) (43)

where

E2b E2b -- E2b _j = RuE2 (44)_'=---h--u 7=--h---v w=----f-w

The unknown functions of integration in equations (41), (42), and (43) are determined in the

following manner. The function Uo(_/) is determined from the symmetry condition on the x-

displacement component about the midspan of the beam, i.e.,

5(,/,. ,7)= o (45)

The functions v.(_/) and Wo(_) are determined by requiring that the displacements be compat-

ible with the following constitutive relationships.
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(_w clu
a_ + Tz = yxz = R45"ryz + R55_xz (46)

av
a'_"= Y_ = R44_r_+ R_rxz (47)

Note that the expression for the out-of-plane displacement component, v, given by equation

(42), was obtained by integrating the shear strain ?_, along the length of the beam. Satisfying

equations (46) and (47) produces two constants of integration. The constant obtained from

integrating equation (46) with respect to x is solved for by using the rigid support condition,

i.e.,

c
_( -E' - '/`') = o (48)

Integrating equation (47) with respect to z produces a constant in the expression for the v

displacement component which is a rigid body translation term and is set equal to zero to

prevent any rigid body motion in the y-direction. Performing the integrations and satisfying

the above conditions gives the following displacements for a monoclinic layer.

oo 3 (49)

22, ,(+ R'I, 2_ - R",3 + R"I6,,1./Lj Amj +Brn 1 Prnsinpm¢

cosh -- sinh --
m,=l j=,l 2 2

R_
v= (fi,,R2Bo+#-_,Ao+fi,6REo)¢---_-Oo_

oo 3

+ #,6,t_-#_+#,s,_, A.,.,,.j _j,,,.,,
cosh

m==l j=,,1 2

_ sinh ).ilZm_l I (50)+ Brnj Prn sin Pm_
sinh )'//zm

2

Analytical Procedure 42



= "R13RBo_l 4" R'13 R36R16_ RCo + R"11 ------- R3
R66 R66 T (_; -- ;2)

. R33 .
* -#- ,_o_+ fi_Eo_- fi,_Oo_+ Go

oo 3

m=l I=1

sinh ,_jlZrnPf

cosh -'_J#rn
2

+ Bmj cosh _'J/_rn_/"J/j,ll m Pm cos Prn_
sinh

2

(51)

where

= - T (a2 - a2)
\

R33 Ao % --+ R 2 + _ + R_D°52

_ 3

+_SJ(-- "R33 _36Lj)lArn, tan h )'lI_mR,,aj- T +
m=l ,/'=1

_'jl_m _" COS
-- BmFoth _'_ )_'m Pro52

(52)

3.3 Solution for Orthotropic Layers

3.3.1 Governing Differential Equations

For orthotropic, transversely isotropic, and isotropic layers the solutions for the stresses and

displacements are obtained in exactly the same manner outlined above with two noteworthy

exceptions. The stress functions become uncoupled and in the case of transversely-isotropic

and isotropic layers, the characteristic equation has repeated roots. The out-of-plane shear

stress components are now uncoupled from the in-plane strain components as a result of the
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planesof materialsymmetryassociatedwiththeselayers.Consideringastateofgeneralized

planedeformationin thexz-plane,theconstitutiverelationshipscanbewrittenas:

,x} FR_,R_s0 -iFOx,l'z = |Rls R_ 0 /,_o,,_,
Yxz L 0 0 Rss-J(.Txz]

(53)

[t o

where R,j are the reduced plane strain compliance terms, defined as follows:

(54)

_ s_s_
Rtj = Sjj

S'22 ij = 1,3

R,4 = S,.

R_--

R66 = S6s

(55)

Again for the case of plane stress in the xz-plane the R V are replaced by _, the transformed

compliance terms.

Following the same procedure as for the monoclinic layers, the two compatibility equations

which need to be satisfied result in two uncoupled partial differential equations in terms of the

stress functions.

L4d>= 0

L2_'= 0 (56)
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3.3.2 Solution for Stress Functions

The corresponding characteristic equations are:

RllJ. 4 -- (2R13 -I- R55ii 2 4- R33 = 0 (57)

R_2-R_ =0 (58)

For an orthotropic layer, the roots to these equations are:

),2 (2R13 + R55)'t'J (2R13 + R55)2 - 4RllR33

1,2 = 2R11 (59)

The expressions for the stress functions can now be written as:

o=o

Ao _2 Co 3¢(_, ,I) =-_- + _,i 2 cos+ _ I'I + _ gm(_l) Pm_

m=l

(60)

oo

_(_.. 17)= Do4 + Eo_l + _ hm(_l) cos Pm_

m=l

(61)

where the constant F, appearing in equation (29) is now zero and

2

_j/A c°sh _JP'm_/ sinh )-;#m_/ 1gm(ri) = mj 4" Bmj _-
cosh _'j#_____m . sinh "_jl_m

J=_ 2 2

(62)
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cosh ,_3/_mp/ sinh ).3/Zmr/
hrn(_/) = Am3 + Bin3 (63)

_3/Zm ).3/Jm
cosh -- sinh --

2 2

3.3.3 Stresses

Substituting equations (60) and (61) into equation (11) gives the expressions for the in-plane

stress components; a_, a_, and T¢_,which are the same as for a monoclinic layer but with the

summation on j being from 1 to 2. The out-of-plane shear stresses for an orthotropic layer are:

Z /lr¢z = Eo + '_3P'm Am3 J.31_m + Brn3 cos Prn'_ (64)
cosh- sinh )'3/z----_--m

m=l 2 2

oo

ZI cos, .3 m s,nh .3 m tTX_I= -Do + Pm Am3 + Bin3 ": sin Pm_ (65)
cosh _'3/_m sinh x3#------_--m

m=l 2 2

For transversely isotropic or isotropic layers in the xz-plane, _1 = S==,S,= = St=, S= = S'u, and

S'= = 2(_1- _;), which results in the following equality:

(2R13 + RS5)2 - 4R121= 0 (66)

Therefore, the characteristic equation in equation (57) will have repeated roots and the sol-

ution for the function g,.(_/) becomes:
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gm(_l) = (Am1 + Am2rl)

cosh 21#m_t sinh 21#m_/
(67)

+ (Bin1 + Bm2rl) 2111 m)'l#m
cosh -_ sinh

2 2

where

)'I - 2R_3+ R_ (68)
2Rll

The expression for h,.01) is the same as given by equation (63) but with ).3 = 1 . Note, that for

an isotropic layer the root )-1 will also be equal to 1. The stresses can now be written as:

R{ Z22_l = "_ B o 4- CoT 4- ),l/Zrngm(r/) cos Pm_

m----1

oo

+ 2 ,i1# m Art _ + Bnr2
cosh )'l/zrn sinh )'l/zm

m=_ 2 2

l c°spm_}

(69)

oo

m=l

(70)

oo

.rtn ---- (Am1 + Am,2rl)

m=l

+ Pm Am2

cosh )"l'_rn
m=l 2

sinh ),1#rn_/

)'l#m
cosh

2

+ (Bin1+ Bm2n)

+ Bin2
sinh ).1/_mr/

)'l//m
sinh

2

t sin Pm_

cosh 21/4m_

sinh
2

l sin Pm_

(71)
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and the equations for _t_ and _r. are the same as for an orthotropic layer given by equations

(64) and (65).

3.3.4 Displacements

The constitutive relationships in equations (53) and (54) and the strain/displacement equations

(3) are used to obtain the following integral expressions for the displacements.

f/ - /, R13
= E.RSo¢. _-- o. dZ:+ Uo(_) (72)

= _fi'66RTczd_+ vo(,l) (73)

ft - /, R33

= R13So_ .1-_ o,i dr I + Wo(_,) (74)

The functions Uo,v,, and w, are found by using equations (45) and (48), but the displacements

must now be compatible with:

yxz=RSSTxz (75)

yyz=R_Tyz (76)

The resulting displacements for an orthotropic layer are:
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= r--LR=RI,(Bo+ Co.)+-- _R13AoJ(¢5 '/2)

oo 2

+ Am,  j.m
cosh

m-1 J=l 2

+ Bmj
sinh ,_jlJ.mtl I sin Prn_
sinh '_jl'zm

2

(77)

= RssREo_ - _ Do_l
oo

Am3 tsinh ).3#,m_/ + Bm3 sin pm(_+
_6'_3 )-3#'m 'J-3#m

cosh -_ sinh
m=l 2 2

(78)

_ = fi13R Bo,7+ coT +--fi- Ao. + (__ _2)+

oo 2

Jr Pm R1311 -- _ Arnj + Bmj cos Pm_,
cosh '_j/_rn sinh _'l#m

m=l j=l 2 2

(7g)

where

2 R" A° + -2- (62 - 62)

oo 2

"f" Prn R'-13)'j -- _ Amj tanh --7 - Bmlcoth _ cos Pm62

m=l j=l

(8O)

The displacements for transversely isotropic and isotropic layers are:

= [_,R2(eo+ co.)+ _3Ao](_- '/,)
oo

+ _ (R'11'3"_-- "R13)gm(_1)Pm sin Pine

m=l

+ 2R-_ _l1 Art _ + Brr_
cosh )'1/_m

m=l 2

cosh ).1#mr/ '_ sin
Pm_

sinh _'l/Zm )
2

(81)
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= -R_REo¢ -- R_
Do_1

CK3

+ Am3 _.31_m
cosh

m-1 2

+ Bin3
cosh _3#m_/

sinh '_¢L-------_m
2

sin Prn_

(82)

= R13R Bo_1+ Co + _ Aorl + R=R"-11___ (_ _ _2) + Go

c<)

+ Pm R'13)'1 - _ (Am1 + Am2")

m=l

oo

+R  13+ cosh
m=l 2

sinh _1#rntt + (Brnl + Bm2_l)

cosh '_I/zm
2

+Bin2
sinh 21/Zm_

_l/_m
sinh

2

I COS Pm_

-]cosh _l_rn_

I COS Pm_
sinh )"1/_--_-m J (83)

2

where

2 8 + R 2 + R3_'11 (62 -- 62)

oo

,t--_- (Br_ - A_) cos Ore62
m=l

+ Pm R"13_-1 -- _ Am1 2 tanh

m----1

Jl.I/Z m

(84)

( B=2 / )_#m 1Bin1 -- T coth--_ cos pro62

The above expressions for the in-plane stresses and displacements in orthotropic,

transversely-isotropic, and isotropic layers are identical to the expressions obtained if the

following plane strain assumptions are made:

_y = Yxy -- Yyz = 0 (85)

'then the out-of-plane displacement, v, and the two out-of-plane shear stress components, _r_

and T_.,,become zero and only one stress function is required in the formulation. Also, if the
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coupling terms in the generalized plane deformation analysis for a monoclinic layer are as-

sumed to be small, i.e., neglecting shear coupling effects, then the above orthotropic solution

becomes an approximate solution which assumes plane strain conditions for an off-axis ply.

In this case, the out-of-plane shear stresses are nonzero and are expressed in terms of the

in-plane stress components using equation (8), i.e.,

Txy

R,15

R44 _xz

R16¢rxx + R36Gzz

R66

(86)

3.4 Solution for Laminated Beam

3.4.1 Determination of Unknown Constants

For a laminated beam containing N layers, the previously derived solutions for the stresses

and displacements are applied to each individual layer. For the k u' layer, the six unknown

coefficients, A_] and _,_FIc*)inequations (28), (62), (63), and (67) are determined from the bound-

ary conditions on the top and bottom surfaces and from the continuity of stresses and dis-

placements at the interfaces. The applied tractions acting on the top surface and at the two

supports satisfy global equilibrium and are initially assumed to be uniformly distributed over

a distance d and expanded into an infinite series as follows (see Figure 4):

oo

-- b"d" + 2 sin cos pro61 cos Prn_ i = 1,2 (87)

m=l
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c
where 6_ = 1/2for three-point bending and 6z = "-L-' and where i equals 1 and 2 for the top and

bottom surfaces, respectively.

The boundary conditions are:

(88)

(8g)

•_(¢, '/,) = o (go)

"r_(_, -- 1/=)= 0 (91)

_r_,_(_, Vz) = 0 (92)

_(;_(_, - V=) = 0 (93)

The interracial continuity conditions are:

_,/.)= 1/.) (g4)

(95)

(96)

u-(k)(L_ 1/,)= u-(k+l)(¢,t/=)

V_)(¢, -;/,) = v-(k+l)(L I!,)

(g7)

(g8)

_)(¢. _,/,) = _k+l)(,. ,/,) (9g)
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Applying these condtions results in a 6N x 6N system of linear algebraic equations, corre-

sponding to the infinite series part of the expressions, which is solved for the 6N unknown

constants. The nonseries terms in these conditions result in:

A(ok)= --1.0 (100)

o( k)= 0.0 (101)

for k = 1 to N and in a ( 4N - 1 ) x ( 4N - 1 ) system of linear algebraic equations in terms of

B_), C_) , E_), and G_) ( the constant of integration obtained when integrating == for k =/=N ).

There are 4N unknowns yet to be determined, therefore four more equations are needed.

Three equations are obtained by applying the traction free end-face boundary conditons at

= 0 or 1. Due to the symmetry of the problem only (_ = 0 is considered. These conditions

are approximately satisfied by requiring that the resultant normal force, resultant shear force,

and resultant moment vanish in the integral sense and not pointwise, i.e.,

N

k=l

=0 (102)

N

/ , ;c0.),.
t,, _

k,,=l

= 0 (103)

N

k=l

(104)
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where _*) is the nondimensional distance measured from the midplane of the beam to the

center of the k_' ply (see Figure 5). Performing the integration results in:

N M

k----1 m=l

= 0 (105)

N M

k==l m----I

= o (lO8)

N

Z(c ,
k=,l

M M

+ 12_-'_j_-(mk)+ 12q--(k)B(k)+24_k)_'(mk) t
m==l rn=l

= 0 (107)

where, for a monoclinic layer:

3
_(k). (k)

_) = \ _(k).(_),,(k),_,, ^j
_rrt

// j^j _'m "_mj .... 2
j=1

(lO8)

3

_'(mk) .__ (k)_ (k) /-j l_m_'rd-j _mj tanh 2

_=I

(lO9)
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3

2 2 (110)

j=l

For an orthotropic layer, B'_) and C'_) are the same as the monoclinic case but with the range

on the j index being from 1 to 2, and

_mk) =(k) (111)---- _rn3

For transversely isotropic and isotropic layers the axpressiGns become:

.(k) (k)B(n_ i .(k)(k) I_) = "1_(_)'_'m(k)A(k)_m,tanh x, 2/zm +--"2- "_k)#_)c°th "_' 2/_rn + 2 (112)

,4(k) .(k) (k) _(k). (k) \
"tl #m ^1 /-¢rn.(k) (k)'m'2 )C--(mk) ± =_(k)( _(k), (kL,,t h

= Xl /_m _tanh 2 2-r- _ml t^l _'rn "" 2
\

(113)

and the value for E_) is the same as an orthotropic layer given in equation (111). The last

equation is obtained by applying the rigid support condition to the N 'h layer. This corresponds

to using either equation (52), (80), or (84), depending on the type of layer.

3.4.2 Program Development

A program was written to perform the required numerical calculations in the above solution

procedure. The material properties, beam geometry, and ply dimensions are input along with

the desired loading. Once the reduced compliances are calculated, the characteristic roots

are determined. A check is made to make sure that the material properties are such that real

roots are obtained. The 6N x 6N system of linear equations is setup and solved for the 6N
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Flgure 5. Local coordinate system.
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unknowns using an algorithm for unsymmetric banded coefficient matrices. If M terms are

needed in the infinite series for convergence, then this system is solved M times. Conver-

gence was based on the agreement between the applied traction on the top surface and the

resulting <_= stress distribution along this same surface. Figure 6 shows the case for M equal

to 50 terms where the applied load is uniformly distributed over a distance d =0.02 in. and the

resulting a= distribution has been normalized by the applied stress. This figure demonstrates

that more terms are needed in the truncated series as the maximum value of a= underesti-

mates the applied value and exhibits an oscillating behavior. In Figure 7. 400 terms were used

in the series and a much better correlation with the applied loading is obtained. Similar re-

sults were also obtained for the bottom surface tractions at the two support locations. Once

these 6N unknowns are resolved the remaining 4N unknowns are found by solving the 4N x

4N system of linear equations. This system only needs to be solved once but does not have

the advantage of being assembled into a banded form. The resulting stress distributions and

displacement fields in the Cartesian coordinate system are then calculated either through the

thickness, along the span, or contours.

Verification of the program was carried out by checking global equilibrium at constant x

cross-sections and at constant z cross-sections. This included checking the resulting stresses

to see if they satisfied the applied boundary conditions. The solution was also verified to be

independent of material properties for an isotropic layer and in addition, the satisfaction of

interfacial stress and displacement continuity was checked. Additional confirmation was

achieved by comparing the results for an orthotropic beam with the results presented by

Whitney [14]. In the case of transversely-isotropic and isotropic layers, and for the generalized

plane deformation state in off-axis plies, the results were compared with an infinite beam

solution derived on the basis of the infinite Fourier transform technique [20]. In each of these

comparisons extremely good correlation was demonstrated.
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Figure 6. Fourier series representation of uniform load (M:50 terms).
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Chapter IV

Preliminary Analytical Results

4.1 Introduction

In order to ascertain the dependence of the local or sublaminae stress states on the beam

geometry, support conditions, and external tractions, the solution procedure developed in

Chapter 3 was applied to various laminated and unidirectional three-point bend specimens.

The principal specimen parameters studied were the fiber orientation, stacking sequence,

distance between the supports, and the type of external loading expressed in terms of the

boundary conditions. The effect of shear coupling resulting from the presence of off-axis layers

on the local stress state was also determined. As mentioned previously in the derivation, the

type of laminae can be either isotropic, transversely-isotropic in the xz-plane (see Figure 4),

orthotropic, or monoclinic, i.e., an off-axis ply in the xy-plane. The stacking sequence can in-

clude any combination of these and be either interspersed or grouped. Layers which have

fibers oriented parallel to the x-axis, i.e., 0_, are orthotropic. A transversely-isotropic layer is

characterized by fibers running parallel to the y-axis, i.e., 9(P. The distance between the
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supports is associated with the amount of beam overhang and also defines an aspect ratio

as the span length divided by the overall heigth of the beam, i.e., a/h.

In the development of the elasticity solution, a laminated beam subjected to three-point

bending was modelled by specifying applied tractions at the two support points which, along

with the loading on the top surface and the traction free end-face conditions, satisfied global

equilibrium. In the investigation of shear coupling effects, beams with no overhang are

studied and the analytical results from the elasticity solution are compared with Pagano's [23]

solution for cylindrical bending. In the cylindrical bending problem, the boundary conditions

for three-point bending are approximated and the resultant shear stress distributions on the

end faces of the beam maintain global equilibrium with the applied loading. The conse-

quences of expressing the boundary conditions in these two different ways is addressed.

4.2 Prefiminary Analyses

4.2.1 Through the Thickness Distributions

The initial numerical calculations which employed the elasticity solution showed how the dif-

ferent in-plane stress components varied through the thickness of a unidirectional IP beam.

The material system used for this analysis was AS4/3501-6 Graphite/Epoxy. The material

properties in the principal material directions were:
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E1 = 21.O MS/

E2 = 1.5 MSI

E3 = 1.5 MSI

G12 = 0.8 MS/

G13 = 0.8 MS/

G23 = 0.4 MS/

v12 = 0.3

Y13 ----"0.3

v23 = 0.55

The beam had an overall length of L=3.2 inches and a height of h=0.16 inches. The applied

tractions on the top surface and at the supports were assumed to be uniformly distributed over

a small finite distance d which was taken to be equal to 0.02 in.. This was the same value used

by Whitney in his results using an elasticity solution for an orthotropic beam [14]. Distributions

for the bending stress, _,=, normalized by the applied stress, for four different aspect ratios:

a/h=20.O, 10.0, 1.0, and 0.5 are shown in Figure 8. These results are for a x-location which

corresponds to the termination point of the uniformly distributed load. The maximum

compressive and tensile values occur on the top and bottom surfaces, respectively, and are

largest for the aspect ratio of 20.0 where bending effects govern the beam's global response.

However, the magnitudes of the maximum tensile and compressive stresses are different and

the distribution is nonlinear. This differs from the classical beam theory results which predicts

a linear distribution and equal magnitudes of maximum compressive and tensile stresses.

For the four different aspect ratios considered, the magnitude of the maximum bending stress

predicted by the elasticity solution is approximately three times greater than the value ob-

tained from beam theory. However, this is a localized effect and at a sufficient distance away

from the concentrated load the classical beam theory results are recovered. For aspect ratios

less than or equal to 1.0, the bending stress is approximately zero except for areas located

close to the bottom surface and especially the top surface.

The distribution through the thickness of the normal component of stress, or.., for the same

x-location as in Figure 8, normalized with respect to the applied stress, is presented in Figure
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9. Themaximumvalue for this stress component occurs at the top surface and when the as-

pect ratio is less than or equal to 1.0 the effect of the bottom support changes the distribution

as seen in Figure 9. The magnitude of the maximum value when normalized by the applied

stress is equal to 0.5 at this x-location due to the Fourier series representation of a uniformly

distributed load. There is no significant change in the distribution through the thickness until

the distance between the supports becomes less than the height of the beam. The shear

stress, T,=, distribution through the thickness, normalized with respect to the applied stress,

behaves much in the same fashion as the normal stress o= at the given x-location. This is

demonstrated in Figure 10, which shows that the maximum value occurs below the top surface

and not at the midplane of the laminate as predicted from beam theory. Also, the distribution

is not parabolic as classical beam theory results indicate. However, as in the case for the

bending stress, the elasticity solution for _= coincides with beam theory at a sufficient distance

away from the load point and the supports.

4.2.2 Shear Stress Contours

A better illustration of the local stresses in the vicinity of the applied load is needed because

stress components in this area vary rapidly in both the x and z directions. This was accom-

plished by plotting stress contours in the neighborhood of the applied load for different types

of beams. Of particular interest was the in-plane shear stress, ¢=, which exhibited a rapid

change in magnitude close to the top surface of the beam (see Figure 10). The four types of

laminates analyzed were: isotropic, (P unidirectional, cross-ply, and quasi-isotropic. The

overall beam dimensions were the same as used in obtaining the previous results with the

span length-to-depth aspect ratio, a/h, being equal to 1.0. Also, the applied tractions were still

assumed to be uniformly distributed over a distance d =0.02 inches. Figure 11 shows the re-

sulting T,._ stress contour for the case of an isotropic beam. The maximum value has a mag-

nitude of 14 psi for a unit applied load and is located at the point of discontinuity in the surface
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tractions and just below the top surface. For the same loading conditions, the solution for the

0° unidirectional beam predicts a larger maximum value for the shear stress T_=and shifts the

location of the maximum stress closer towards the upper surface of the beam, as shown in

Figure 12. This is in agreement with observed shear failures seen in previously published

experimental results [39]. The contour plot in Figure 13 shows the effect of placing a

transversely-isotropic, i.e., 9(7', ply below a top layer which has a fiber orientation of 0_. In

comparison with the unidirectional 0° beam results, the magnitude and location of the maxi-

mum shear stress are relatively unaffected. For the case of a quasi-isotropic laminate having

a stacking sequence of EO/+45/90]s , the magnitude of the maximum shear stress increases

slightly up to 20 ksi, as illustrated in Figure 14, but the location remains the same as in the

0" beam.

Another component or"stress or, in this case, combination of stresses of concern is the maxi-

mum shear stress, _,,,= in the xz-plane which acts on the plane bisecting the angle between

the two principal stresses. Some of the experimental results published in the literature (cf.

Reference [5]) have attributed one of the basic failure modes in beams to the location and

magnitude of the maximum shear stress. Figure 15 presents the maximum shear stress

contour for an isotropic beam which is subjected to a unit load and has an aspect ratio of 1.0.

This figure illustrates that the maximum shear stress contour is symmetric about the midspan

of the beam and the maximum contour is located approximately 0.01 inches below the top

surface. In comparison, Figure 16 shows that for a IP unidirectional beam having the same

geometry and subjected to the same loading, the maximum shear stress occurs on the top

surface with very high gradients in the neighborhood of the applied load. Also, the magnitude

is almost three times greater in comparison with the results for the isotropic beam. The larger

magnitude is associated with the bending component of stress, o_, , having a much larger

value in the 0° composite beam when compared to an isotropic beam subjected to the same

loading.
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4.3 Shear Coupling Effects

To study the effect of shear coupling on the stress state in a laminated beam under three-point

bending, unidirectional beams which had different aspect ratios and different fiber orientations

were examined. First, the dependence of different stress components and their corresponding

maximum values, and the dependence of the midspan deflection on the beam geometry were

investigated for different aspect ratios. The aspect ratios considered for this study ranged

from a/h=3.125 up to 18.75. The beams were all unidirectional with no overhang and the

applied loading was uniformly distributed over a small finite distance, d =0.02 inches, as in the

preceding cases. The analysis was carried out for 0_, 30_, 60_ , and 90° fiber orientations.

Second, the dependence of local stresses and deformations on the fiber orientation of a

unidirectional beam were determined. For this part of the analysis the smallest and the

largest aspect ratios, a/h =3.125 and a/h =18.75, respectively, were considered. The beam's

response was investigated using both the two-dimensional elasticity analysis developed in the

present study and by the cylindrical bending analysis discussed by Pagano [23]. As described

in the beginning of this chapter, the two approaches apply different boundary conditions to

satisfy global equilibrium. The two different analyses were performed in the shear-coupling

investigation to study the effect of different end-face boundary conditions on the results. The

effect of shear coupling in both of the above investigations was determined by calculating the

difference between the results based on plane strain assumptions and the generalized plane

deformation results, This was used as the determining factor because the plane strain as-

sumptions neglect the effect of any shear coupling by using an ortho.tropic solution for the

beams having fibers oriented at an off-axis angle.
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4.3.1 Beam Deflection

i The maximum midplane deflection at the beam's midspan is plotted as a function of aspect

ratio in Figure 17 for the four different fiber orientations stated earlier. The deflections have

been normalized with respect to the classical beam theory results using the axial Young's

modulus of the beam, i.e., E,. For the off-axis beams, this required rotating the properties in

the principal material directions to the Cartesian xyz-coordinate system. Recalling Figure 4,

the aspect ratio of the beam is defined as the beam's span length divided by the heicjht, i.e.,

a/h. Figure 17 illustrates that the results for the generalized plane deformation and plane

strain analyses coincide for (7' and 90 ° fiber oriented beams. This is because the solution for

the two different strain states reduces to the same form in these two particular cases. For the

off-axis cases the plane strain analysis predicts larger displacements than the generalized

plane deformation solution. One reason the plane strain results are larger is because the

out-of-plane shearing strains, i.e., _,y and _, are assumed to be zero for a state of plane

strain. Consequently, a larger portion of the work input to the system is expended for the w

deflection, rather than strain energy stored due to the out-of-plane, i.e., y-direction, defor-

mations, and larger displacements in the z-direction are produced. Also, this figure shows

that the plane strain laminated beam results approach the classical beam theory value, i.e.,

a normalized displacement equal to 1.0, for very high aspect ratios. This is true even for the

off-axis beams where the plane strain assumption has neglected any effect of shear coupling.

With a generalized plane deformation analysis, on the other hand, the deflection approaches

a constant value as the aspect ratio becomes large which is less than the beam theory value.

This constant value is different for the two off-axis fiber orientations considered. It should also

be noted that for aspect ratios as high as 12, the deflection in the 0° beam is still about 40%

larger than the value predicted from classical beam theory which neglects shear defor-

mations.
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The percentage difference between generalized plane deformation and plane strain for the

two off-axis beams as a function of aspect ratio is plotted in Figure 18 and shows that the dif-

ference approaches a constant value as the aspect ratio of the beam increases. This behavior

is the same for both the laminated beam analysis developed in the present study and the cy-

lindrical bending analysis of Pagano [23]. However, the effect of shear coupling is greater for

the cylindrical bending type of boundary conditions. The difference between generalized

plane deformation and plane strain is less for the smaller aspect ratios than for the larger

aspect ratios, i.e., the effect of shear coupling on the deflection is less severe in beams having

._mall aspect ratios. This is true because for small aspect ratios the beam deflection is pri-

marily due to shear deformations in the xz-plane rather than the bending deformation, and

shear deformations in the xz-plane are not expected to be affected by the plane strain as-

sumptions. In addition, high aspect ratio beams have larger bending stresses than small as-

pect ratio beams, and the magnitude of the bending stress is significantly influenced by having

the fibers oriented at some off-axis angle.

Presented in Figure 19 are the differences, Aw, between the generalized plane deformation

results for the deflection and the corresponding plane strain results as a function of fiber ori-

entation, for two aspect ratios. For the small aspect ratio of a/h=3.125, the maximum differ-

ence between generalized plane deformation and plane strain occurs at a fiber orientation of

approximately 40 ° . The maximum difference occurs for fibers oriented at approximately 35°

for the large aspect ratio of a/h=18.75. The large variation in the difference between gener-

alized plane deformation and plane strain as the angle of the fibers changes shows that the

effect of shear coupling on the midspan deflection strongly depends on the fiber orientation.

The greatest difference, 70%, is seen for an aspect ratio of a/h=18.75 and the cylindrical

bending analysis. Also, for the entire range of fiber angles, excluding (P and 9£P, the cylin-

drical bending results are affected more by shear coupling in comparison with the present

beam solution. Additionally, for the range of aspect ratios studied and all fiber orientations,

if shear coupling effects are not accounted for in the cylindrical bending and present laminated
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beam analyses then larger midspan beam deflections are predicted. One further note, the

present laminated beam solution predicts larger deflections than the cylindrical bending

analysis for all aspect ratios and fiber orientations considered.

4.3.2 Normal Stresses

The maximum compressive bending stress, a., which occurs on the top surface and at the

midspan of the beam, was normalized with respect to the classical beam theory result and

plotted as a function of aspect ratio in Figure 20. For the 30_ and 00° beams it is seen that the

generalized plane deformation analysis predicts larger bending stresses when compared to

the plane strain results. This behavior is seen in Figure 20 to be true for the entire range of

aspect ratios considered and is opposite of what was seen in the midspan deflection. That is,

accounting for the shear coupling effects in off-axis beams increases the bending stress. Ex-

amining the curves for the off-axis beams and considering a given aspect ratio, the bending

stress predicted from the plane strain analysis is closer to the classical beam theory value,

i.e., a normalized stress value of 1.0, than the result obtained from the generalized plane de-

formation analysis. Figure 21 shows the difference between generalized plane deformation

and plane strain for five of the stress components as a function of aspect ratio for the case

of a beam having fibers oriented at 30_. The same results but for a fiber orientation of 60 ° are

given in Figure 22. These two figures show that the difference between generalized plane

deformation and plane strain for _r,= is greater for smaller aspect ratios. For the range of as-

pect ratios considered, this difference is larger for the case of the 3(P beam than for the 617'

beam. The difference between generalized plane deformation and plane strain for the bend-

ing stress is plotted versus the fiber angle in,Figure 23. For the two different aspect ratios,

a/h equal to 18.75 and 3.125, the cylindrical bending results for the bending stress are less

than the values obtained from the present laminated beam analysis for all fiber orientations.

For an aspect ratio of a/h=18.75, the maximum difference between generalized plane defer-
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mation and plane strain is for a fiber orientation of approximately 25 ° . For the case of a small

aspect ratio, a/h =3.125, this maximum difference occurs at about 30°

The maximum value of the out-of-plane normal component of stress, o_, which is located on

the top surface of the beam, was normalized with respect to the applied stress, P/bd, and

plotted versus the aspect ratio in Figure 24. It is seen that this component of stress is larger

for the off-axis fiber oriented beams than for the (P and 9(P unidirectional beams for all aspect

ratios. For the case of a O" fiber orientation, en, is seen to be independent of the aspect ratio.

This figure also shows that the plane strain analysis predicts a larger c,_, stress component

than does generalized plane deformation for all aspect ratios for both the 30° and 60 ° beams,

i.e., neglecting shear coupling overestimates the o_ stress. For the off-axis fiber orientations

the magnitude of the out-of-plane normal stress increases as the aspect ratio of the beam in-

creases. This increase is seen to be much larger for the case of a beam with a fiber

orientaton of 61P when compared to a 3(7' beam. Figures 21 and 22 show that the difference

between generalized plane deformation and plane strain for _r_ increases as the aspect ratio

of the beam is increased. Accordingly, the a_ stress component is affected more by shear

coupling in the higher aspect ratio beams. In Figure 25 the difference between the generalized

plane deformation result and the plane strain result for the out-of-plane normal stress is

plotted as a function of fiber orientation. Note that there is no significant difference between

the cylindrical bending results and the present laminated beam results. For the case of a

small aspect ratio, a/h=3.125, the plane strain analysis predicts larger values of an as com-

pared to the generalized plane deformation analysis for fibers oriented at angles up to 65°.

For fiber orientations between 65" and 90° the generalized plane deformation analysis predicts

larger values. When the aspect ratio of the beam is large, i.e., a/h=18.75, the above result

is also true except now the change in sign of the difference occurs at a fiber orientation of

approximately 73 °. For both of these aspect ratio._ the shear Coupling effects on the compo-

nent of stress o_, are maximum for the unidirectional beams having a fiber orientation some-

where between 35° and 45 ° .
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4.3.3 Shear Stresses

The maximum in-plane shear stress, _,=, was shown in Section 4.2.2 to be located below the

top surface of the beam and underneath the point of discontinuity of loading on the top sur-

face. This differs from the classical beam theory result, which as previously stated, predicts

a parabolic stress distribution through the thickness and a maximum value located at the

midplane of the beam. Also, the expression for z_= derived from classical beam theory is in-

dependent of the x-coordinate, i.e.. position along the span of the beam which differs from the

elasticity solution. The dependence of the maximum in-plane shear stress on the aspect ratio

of the beam is shown in Figure 26 for the four different fiber orientations. These maximum

values have been normalized with respect to the maximum value calculated from beam the-

ory. As was shown for the bending component of stress, generalized plane deformation pre-

dicts a larger component of shear stress in comparison to plane strain for all the different fiber

orientations and aspect ratios. Consequently, shear coupling effects produce an increase in

the in-plane component of shear stress. Also, this figure shows that the results for T==from

the laminated beam analysis developed in the present study are larger than the classical

beam theory results and never approach the beam theory prediction even for very high aspect

ratios. It should be noted that the location dependence has been relaxed for the normalization

used in this figure. In other words, the maximum beam theory value is not at the same lo-

cation as the maximum shear stress value determined from the laminated beam analysis.

Referring back to Figures 21 and 22, the difference between generalized plane deformation

and plane strain for _,= and a given fiber orientation does not depend strongly on the aspect

ratio of the beam. This difference is approximately constant up to an aspect ratio of 10, then

slightly increases as the aspect ratio is increased. The effect of fiber orientation on the dif-

ference between the in-plane shear stresses for generalized plane deformation and plane

strain is demonstrated in Figure 27. This figure also shows that this difference, i.e., the effect

of shear coupling, is greater for the present laminated beam analysis than for the case of cy-
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lindrical bending when the beam has a large aspect ratio. For beams having a small aspect

ratio, the cylindrical bending analysis predicts larger shear coupling effects.

For the (P and 90_ unidirectional beams the out-of-plane shear stresses, T,._ and Tr=, are zero.

Recall that for these types of beams the generalized plane deformation analysis is reduced

to the form of a plane strain analysis. For the case of an off-axis fiber oriented beam, the

maximum value for T_ is located on the top surface of the beam. The maximum value for the

other out-of-plane shear stress, ¢_, is located beneath the top surface near the point of dis-

continuity in the applied loading as in the case of the in-plane shear, T,_. Since the component

of shear stress T_, is not a quantity normally associated with classical beam theory, the results

for the maximum values have been normalized with respect to the applied loading and are

shown as a function of beam aspect ratio in Figure 28. This figure shows that for the two dif-

ferent off-axis orientations and for all aspect ratios the plane strain analysis predicts larger

values for _-_,than does the generalized plane deformation. Therefore, if shear coupling ef-

fects are neglected then the magnitudes for "r_ will be over estimated. Also, the magnitude

of the maximum value of 1:,., increases as the aspect ratio of the beam increases. For the

plane strain results this increase is larger for the case of a beam having a fiber orientation

of 3(P when compared to the 60* beam. This increase is smaller when the generalized plane

deformation results are considered. The difference between generalized plane deformation

and plane strain as a function of the aspect ratio for _r,_ is similar in behavior to that of the

out-of-plane normal stress, _ as shown in Figures 21 and 22. In Figure 29 the difference be-

tween generalized plane deformation and plane strain for _r, is plotted versus the fiber angle.

Similar conclusions which were drawn from Figure 27 concerning the out-of-plane normal

stress cr_ apply also to T, as seen from Figure 29.

The other out.of-plane component of shear stress, T),=,is much smaller in magnitude when

compared to the other two shear stresses. Its maximum value was normalized with respect

to the applied stress and plotted in Figure 30 for the two off-axis beams as a function of aspect

ratio. The magnitude of "r_ decreases slightly as the aspect ratio of the beam is increased.
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For both the 30 ° and 60 ° beams the generalized plane deformation analysis predicts larger

values than plane strain for all aspect ratios. In reference to Figures 21 and 22. the difference

between generalized plane deformation and plane strain for Cv=is seen to increase as the

beam aspect ratio is increased. Figure 31 shows how this difference between generalized

plane deformation and plane strain depends on the fiber orientation for two different aspect

ratios. For both the large aspect ratio and the small aspect ratio, the present laminated beam

analysis predicts a smaller difference than the cylindrical bending analysis for all fiber orien-

tations. For the small aspect ratio and for fiber orientations greater than about 68°. the plane

strain analysis gives larger values of _ than does generalized plane deformation. Similar

observations hold for the large aspect ratio, with the plane strain values being greater than

the generalized plane deformation values for angles greater than approximately 73 °.

4.4 Stacking Sequence Effects

As outlined in the introductory comments of this chaper, one phase of the analytical investi-

gation consisted of determining stacking sequence effects on the local stress state. Conse-

quently, supplementary studies were conducted for a series of quasi-isotropic laminated

beams to ascertain the effects of grouping plies together. The lamination sequences were:

[0/45/- 45/90"1_ , roj45,/- 45,/90,_, [0/60/- 60] u, and [0s/60,/- 60,_. The [0/__.45/901 se-

ries of beams had an overall length L equal to 4.8 inches and height h of 0.24 inches, whereas,

the [0/-I-60] beams were 3.6 inches in length and had a height of 0.18 inches. In accordance

with the earlier investigations in Section 4.2, the overall lengths were chosen such that when

the supports were located at the ends of the beam the span length-to-depth aspect ratio was

equal to 20.0. The different dimensions were a direct consequence of maintaining the same

aspect ratio between the two series of beams for the purpose of making comparisons.

Through-the-thickness stress distributions were generated at an x-location which corre-

Preliminary Analytical Results 94



0.1 40

0.120

0.1 O0

0.080
.D

n

N
>, 0.060

0.040

0.020

0.000

......

m

-......

_60

--_ _30

\ 60

30

generalized plane deformation

plane strain

'.... ' ' " I = ' I I II : : i : II = " _ _ II I I I I

0 5 10 15 20 2.5

a/h

Figure 30. Maximum shear stress :yz normalized by the applied stress as a function of aspect
ratio.

Preliminary Analytical Results 95



60

V

N

t--

45

3O

15

0

-15

-30

-45

cylindrical bending

present study

a/h== 18.75

\

\

\

\

-60

0 15 30 45 60 75 90

e (degrees)

Figure 31, Difference between a plane strain analysis end a generalized plane deformation

analysis for :lq as a function of fiber orientation.

Preliminary Analytical Results 96



sponded to the point of discontinuity in the applied traction on the top surface and compar-

isons were made between the different laminates. Also, in accordance with the earlier

investigations, four different a/h aspect ratios were considered, i.e., 20.0, 10.0, 1.0, 0.5. For the

three components of stress which are continuous across the interfaces, i.e., _=, "r,,z, _y,, there

were no significant changes in the distribution through the thickness between the different

aspect ratios until the a/h aspect ratio became less than or equal to 1.0. The opposite was

seen for the stress components in the xy-plane (Figure 4), i.e., a,=, a n, "r,_, which are discon-

tinuous stress components, where the distribution through the thickness strongly depended

on the aspect ratio when it was greater than 1.0.

4.4.1 Discontinuous Interfacial Stresses

Comparisons between the bending stress, _,,=, distribution through-the-thickness, normalized

by the applied stress, for the grouped and interspersed [0/45/-45/90] laminates are shown in

Figures 32 and 33, for beam aspect ratios of a/h =20.0 and 1.0, respectively. In the case of the

larger aspect ratio, the maximum compressive bending stress located at the top surface is

reduced when the plies are grouped together. In addition, grouping the plies together reduces

the magnitude of the bending stress in the off-axis plies. Conversely, when the aspect ratio

equals 1.0 the magnitude is approximately the same between the grouped laminate and the

interspersed laminate. Similar behavior was seen for the [0/60/-60] laminates. Figure 34

shows the maximum compressive bending stress, normalized with respect to the applied

stress, as a function of beam aspect ratio for the four different laminates. For aspect ratios

which are characteristic of slender beams, i.e., a/h > 10, the maximum compressive bending

stress strongly depends on the stacking sequence and the ply thickness. Also, the quasi-

isotropic laminates containing -t-60 plies have a larger bending stress in comparison to the

+45 cases.
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The results for the out-of-plane normal stress, a_, normalized by the applied stress, for the

grouped and interspersed [0/45/-45/90[ laminates having an aspect ratio, a/h =20.0, are shown

in Figure 35. For an aspect ratio equal to 1.0 the results are presented in Figure 36. Figures

35 and 36 show that grouping plies together significantly reduces the magnitude of _, in the

off-axis plies. This was also true for the [0/60/-60] laminates analyzed. The maximum value

of _ is located at the first interface below the top surface for both the grouped and inter-

spersed laminates and for a/h > 1.0. The magnitudes of <_, normalized by the applied stress,

at the location of the first interface in the four different laminates are plotted in Figure 37 as

a function of the aspect ratio. The results for the [0/60/-60] laminates are slightly smaller in

comparison to the [0/45/-45/90] results in both the grouped and interspersed cases. This fig-

ure also demonstrates that grouping the plies together significantly reduces the magnitude

of a_ at the location corresponding to the first interface, especially for the larger aspect ratios.

As the aspect ratio of the beam becomes small, the effects of the ply thickness and the

stacking sequence are reduced. Similar conclusions can be drawn from Figures 38, 39, and

40, where the results are presented for the _=x component of stress.

4.4.2 Continuous Interfacial Stresses

A comparison of the results for the through-the-thickness distribution of <7,=,normalized by the

applied stress, for the grouped laminates with [01451-45/90] and [0/60/-60] stacking sequences

are presented in Figure 41. The results shown are at an x-location which corresponds to the

point of discontinuity in the applied load on the top surface. For this component of stress there

was not a significant difference between the grouped and interspersed cases, The results for

the beams having an aspect ratio of 0.5 show the effect of the applied tractions located at the

bottom surface supports. In both the large aspect ratio case, a/h =20.0, and the small case,

a/h =0.5, the local effects of the applied traction on the top surface diminish more rapidly in

the [0/45/-45/90] laminates in comparison to the [0/60/-60] laminates.
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As previously mentioned, for the given x-location the through the thickness distributions for

the two shear stress components, T=.,,T_, are not a strong function of the aspect ratio until this

ratio becomes less than 1.0. Even for cases when a/h < 1.0, the only effect is in the form of

a very localized disturbance in the neighborhood of the bottom support. The through the

thickness distributions for "r,=, normalized with respect to the applied stress, in the four differ-

ent types of laminates are compared in Figure 42 for an aspect ratio equal to 20.0. The dis-

tributions are for an x-location which corresponds to the point of discontinuity in the applied

loading. Similar results are shown in Figure 43 for the other component of shear stress, i.e.,

.r_. The maximum value for -r_ is shown in Figure 42 to be located directly beneath the top

surface of the beam. The magnitude of "r,= is slightly reduced by grouping the plies together

and is smaller in the [0/45/-45/90] laminates. Figure 43 shows that the. grouped laminates

have a significantly smaller maximum value for "r_ in comparison to the interspersed lami-

nates. Also, the magnitude for "r_ is smaller in the [0/45/-45/90} laminates compared to the

[0/60/-60] case.

4.5 Closing Comments

The analytical results presented in this chapter were obtained using the elasticity solution

developed in Chapter 3 for analyzing various laminated beams. The local stress states were

determined for various beam geometries subjected to three-point bend loading conditions.

The preliminary analyses investigated the geometric, shear coupling, and stacking sequence

effects on the stress distributions. Significant effects were seen in the displacements and the

local stresses depending on the Iriber orientation, span length-to-depth aspect ratio, and

whether or not a grouped or interspersed stacking sequence was used.
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It was shown that for a unidirectional 0° beam the bending component of stress, or, largely

depended on the distance between the supports, whereas, the normal component of stress,

a==, and the in-plane shear stress, _r,=, were insensitive to this distance until it became less

than the overall height of the beam. The location and magnitude of the maximum shear

stress, _=, was demonstrated to be a function of the stacking sequence or type of beam. The

location of the maximum shear stress was shown to be below the top surface and associated

with very high gradients in the vicinity of the concentrated load. The maximum shear stress

contour for a (7' unidirectional beam was shifted closer to the top surface and had a larger

magnitude when compared to an isotropic beam solution. In considering a cross-ply beam, the

90° ply beneath the top 0_ ply had a negligible effect on the magnitude and location of the

maximum shear stress. For the quasi-isotropic case, the 45 ° layer produced a slight increase

in the magnitude of the maximum shear stress.

When unidirectional laminates consisting of monoclinic layers were considered, i.e., off-axis

plies, the results presented showed significant shear coupling effects for a wide range of off-

axis fiber orientations. The generalized plane deformation analysis predicted smaller

midspan beam deflections in comparison to the plane strain predictions. Consequently, a

plane strain analysis which neglects shear coupling effects due to the presence of off-axis

layers, makes the beam appear to be softer. These effects decreased as the span length-to-

depth aspect ratio of the beam decreased. As mentioned previously, for this type of layer

none of the stress components vanished and it was shown that the maximum out-of-plane

shear stress, T=y, had a larger magnitude than its in-plane counterpart, _=. Also, an increase

in the bending stress, <7=,,was seen as a result of shear coupling in off-axis beams. These

results clearly demonstrate the importance of including shear coupling effects in the analysis

by performing the more complicated generalized plane deformation analysis.

The effect of .,,ackmu sequence on the local stress state was analyzed by considering grouped

and interspersed layers in laminated beams having either a [0/-t-45/90] or [0/-t-60] basic ply

grouping. The components of stress which are continuous across the interfaces of a lami-
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nated beam were seen to be independent of the span length-to-depth aspect ratio when this

ratio was greater than 1.0 and for an x-location which corresponded to the point of disconti-

nuity in the applied loading. Conversely, the distribution of the discontinuous stresses in the

beam strongly depended on the span length-to-depth aspect ratio. When comparing the stress

distributions in a grouped stacking sequence beam to those in an interspersed beam, the ef-

fect of grouping layers of equal fiber orientation together was demonstrated by a reduction in

the maximum bending stress and a reduction in the magnitude of T_ in the off-axis plies.

However, these grouping effects on the stress state decreased as the span length-to-depth

aspect ratio of the beam was made smaller.

As a result of the preliminary analytical investigation, the local stress dependencies described

above indicated that different lamination sequences would require testing in the experimental

phase of the study, The testing of three-point bend specimens having similar geometries to

the beams analyzed in this chapter is an essential part of describing and understanding

damage in laminated composite beams. Once the type and location of damage has been

identified, and the corresponding applied load at initiation of damage measured, the results

can be correlated with the theoretical predictions for the local stress states.
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Chapter V

Experimental Investigation

5.1 Testing Program

The analytical procedure developed in Chapter 3 has the capability of predicting the local

stress distributions in a laminated beam subjected to surface tractions which are represented

by a Fourier series expansion. Results were presented in Chapter 4 for the case of a load

uniformly distributed over a small finite distance at the midspan. The reactions at the two

support points were also modelled by a uniformly distributed load. To investigate the damage

initiation and damage mode in laminated beams, the local stress distributions need to be

correlated with the predominant form of initial damage observed for a given beam geometry.

This involves determining components of stress or combinations of stresses that are associ-

ated with the experimentally observed damage states. Therefore, the second phase of the

investigation was concerned with conducting a testing program for laminated beam three-

point bend specimens to investigate the damage izlitiation, forms of damage, and effects of the

initial damage on the ultimate failure. Effects of different geometries and lamination param-
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eters on the damage initiation load and final failure load as well as damage modes were in-

vestigated. Also, beam geometries which experienced extensive damage before the actual

ultimate failure occurred were identified. In these cases, the actual stresses in the beams at

failure may drastically differ from the predicted stresses using a linear elastic analysis. Then

the analytical approach used in the correlation study would not be valid for computing the lo-

cal stress states at load levels greater than the damage initiation load.

The test matrix for the experimental investigation contained eight different quasi-isotropic

stacking sequences, one cross-ply laminate, and one unidirectional lay-up, as shown in Table

1. This matrix was based on the consideration of possible effects of lamination sequence,

beam thickness, distance between support points, and layer thickness on the beam's re-

sponse. Thus, the test matrix was classified into four groups aimed towards studying these

effects. The first classification group considered different classes of laminates and consisted

of the 0_ unidirectional beams, the cross-ply beams, and the thickest interspersed quasi-

isotropic laminates, i.e., [0/-t-45/90]z= and [0/__.60]_. The second group included the quasi-

isotropic laminates with the total number of layers being different and addressed the effects

of the beam's thickness on the response. In reference to Table 1, the second group was

comprised of the 1"0/__.45/90]z_, ro/+_45/go]1_, r0/,+45/90]_, ro/-t-60j3_s , [o/___60]z0s, and

[0/-I-60]_ laminates. The effects of stacking sequence and layer thickness were studied by

considering interspersed and grouped stacking sequences. Therefore, group three contained

the following laminates: [O/-I-45J90]z _ , [0_/45s/--455/905_]_s, [0J+_60]_s, and r05/60_/- 60_s.

The fourth group actually encompassed the entire test matrix and pertained to the investi-

gation of span length effects on the beam's response.

The overall beam dimensions were 6.0 inches in length, 1.0 inch wide, and had a thickness

which corresponded to the total number of plies. The beams were tested using four different

distances between supports, e.g., 5.5, 3.0, 1.0, and 0.5 inches. This produced a range of aspect

ratios, a/h (see Figure 4, Chapter 3), from approximately 0.5 up to 25.0. Note that the ASTM

standard short beam shear test recommends a span length-to-depth ratio of 5.0. Two tests
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were conducted for each configuration, one monotonically up to the initiation of damage fol-

lowed by unloading and one monotonically up to ultimate failure. The initiation of damage

was experimentally defined to be either the point at which the first drop in load was experi-

enced or when the first audible sound of cracking was heard. Only the ultimate failure test

was conducted for the [(O/90),l(gOlO)=]_ cross-ply laminated beams.

The beam specimens were cut from 8.0 x 12.0 inch panels of AS4/3501-6 Graphite/Epoxy. The

laminates were layed-up by the Composites Model and Development Section (CMDS) at NASA

Langley Research Center. Prior to machining the specimens, all panels were C-scanned by

the Materials Processing and Development Section (MPDS) at NASA Langley Research Center

and were judged to be satisfactory. It should be noted that of the 10 panels processed, the

[0s/45 J-45s/g0s] _ and [0/__+60]_ laminates showed the highest percentage of voids. All

specimens were measured using a vernier caliper to determine the final dimensions after

machining. Five measurements were taken across the width and the thickness, and their av-

erage values documented.

1"he identification of damage in the specimens and failure modes was based on the data col-

lected during the testing and post-test inspection of the specimens using an optical micro-

scope. The magnitude of through-the-thickness deformation plus the indentation under the

load was experimentally determined by calculating the difference between the top and bottom

surface displacements. This will be discussed in more detail later on in this chapter. The

damage was documented by taking photomicrographs of the edges of the specimens in order

to illustrate the type and location of damage. A Nikon SMZ-IO stereoscopic microscope was

used in conjunction with a Nikon Microflex HFX photomicrographic attachment and Polaroid

4 X 5 land film.

Experimental Investigation 116



Table1. TestMatrix

Stacking h al/h az/h a_/h a4/h
Sequence (in.)

[01+45/902_

[_/45,/- 45,/9o,2=

[o1+45/9o2_

1o/+45/9o2_

[o/+6o2.,,_

[oJsod - 6os],s

[o/+6o]_

[o/+6o]_

[o,_2

[(Ol9O),1(9OlO)_]_

1,00

1.00

0.60

0.24

1.05

1.05

0.60

0.24

0.75

0.96

5.50

5.50

9.17

22.92

5.24

5.24

9.17

22.92

7.33

5.73

3.00

3.00

5.00

12.5

2.86

2.86

5.00

12.5

4.00

3.12

1.00

1.00

1.67

4.17

0.95

0.95

1.67

4.17

1.33

1.04

0.50

0.50

0.83

2.08

0.48

0.48

0.83

2.08

0.67

0.52

5.2 Testing Procedure

Based on the preliminary analytical results presented in Chapter 4, the various specimen ge-

ometries outlined in the above test matrix were expected to produce different forms of dam-

age. Testing such a wide range of geometries was facilitated by designing a test fixture for

three-point bending. The key features of the test fixture were varying support locations and

easy interchangabi_ity of contact radii. A slotted base plate was used for mounting and posi-

tioning the two bottom surface supports. The supports were located equidistance from the

centerline of the load point and secured in place using recessed bolts on the bottom of the

base plate. A one inch diameter hole was drilled in the center of the base plate for insertion

of a DCDT displacement transducer for the measurement of the bottom surface displacement

relative to the support points. The transducer was held in place with a set-screw. The loading

nose was attached to a 1V= inch by 2 inch rectangular steel bar using four V, inch diameter
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bolls. The two supports and loading nose had a '/. inch radius, were 1'/2 inches wide, and

were measured to have a Rockwell hardness of 20 on the C-scale. The photograph in Figure

44 shows the details of the fixture and a typical beam specimen geometry.

The rectangular steel bar was mounted between two L-shaped gripping plates. The gripping

plates were part of the crosshead arrangement on a MTS 100 kip hydraulic test stand used for

conducting the tests. The set-up for the testing equipment, test fixture, and data acquisition

are shown in Figure 45. All of the specimens were tested with the 100 kip MTS Controller on

stroke control and with the function generator ramp rate set at 1.3 mm/min. This is the loading

rate recommended by the ASTM D 2344-84 standard for short beam shear tests. The load and

stroke ranges for each test depended on the beam geometry of the particular specimen being

tested.

The experimentally collected data consisted of the applied load, and both top surface and

bottom surface beam displacements. The bottom displacement was measured by the DCDT

displacement transducer mounted on the base plate as previously described (see Figure 44).

Transducers having different ranges were used depending on the distance between the sup-

port points. For the specimens tested with a span length of 5.5 inches and 3.0 inches a

transducer having + 0.100 inches of travel was employed. For a 1.0 inch span length a

transducer having a range of 4- 0.050 inch was used because the size of the _+ 0.100 inch

transducer body was greater than the thickness of the base plate. Consequently, the supports

could not be placed an inch apart without interfering with the transducer body. When the span

length equaled 0.5 inches no transducer could be placed between the support points to

measure bottom surface displacements. When a transducer was used it was in conjunction

with a DCDT Summing Amplifier. Initially, it was assumed that the compliance of the machine

and test fixture were negligible and that the stroke motion would accurately represent the top

displacement. However, when testing specimens with small aspect ratios, the resulting small

order of magnitude beam deflections were such that the compliance or so-called "lost motion"

of the system had to be properly taken into account.
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Figure 44. Three-point bend test fixture.
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Figure4S. Testingequipmentandexperimentalset.up.
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Two different data acquisition units were used over the course of the testing program for col-

lecting and storing the experimental data. Data from the preliminary tests was recorded using

a Hewlett-Packard 3497A data acquisition unit and a Hewlett-Packard 9134/9826 computer.

The data was subsequently converted to an IBM format for post-processing. The remaining

tests utilized a Nicolet 4094 Digital Oscilloscope, XF-44 Disk Drive, and 4563 Plug-In Controls

as shown in the center portion of Figure 45. The voltage versus time output format of the

Nicolet system was converted to a time based load versus displacement format using the

Vu-Point software package. The data was then writen to an ASCII file for further post-

processing.

5.3 Results

5.3.1 Displacements

The collected experimental data was post-processed in order to generate applied load versus

beam displacement and load versus local deformation, i.e., indentation curves. As discussed

in the previous section, two displacement measurements were taken, one from a DCDT dis-

placement transducer and one from the stroke of the MTS testing machine. However, the

measured displacements cannot be directly compared with the deformations predicted from

the analytical solution. The transducer reading, for example, contained the summation of

three components of displacement; the amount of bottom surface beam deflection at -the

midspan, the amount of indentation at the suppo_s, and an intangible quantity related to the

test fixture deformation. The summation of five displacement quantities was possibly re-

corded for the stroke measurement; the amount of indentation under the loading nose, the
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indentation at the support points, the "lost motion" due to the machine compliance, fixture

related deformations, plus the beam deflection.

In order to compare the displacements calculated from the elasticity solution with the exper-

imentally measured deformations one needs to isolate the part of the calculated displace-

ments which corresponds to the experimentally measured quantities. Different components

of the experimentally measured displacements at the top and bottom beam surfaces, i.e.,

stroke (Zls) and DCDT (&o), respectively, are shown in Figure 46 and can be written math-

ematically as:

_S -----6s -F _N 4- (5m -f- WD (I)

z_O = 6s + 6¢ + w_ (2)

where, as previously discussed, 6, = support indentation, &N = nose indentation, &,. = ma-

chine compliance plus fixture related deformations, &_ = fixture related deformations, and wb

= bottom surface beam deflection. Subtracting equation (2) from equation (1) results in:

_'S -- P'D ----"_N -I- _rn -- _d (3)

Rewriting this equation:

(AS -- _m) -- (A*O -- _d) = _N (4)

The amount of top surface indentation and deformation can now be found by taking the dif-

ference between the stroke and DCDT readings which have been adjusted for the system re-

lated motion by subtracting the machine compliance and fixture related deformations,

respectively, i.e., equation (4).

The combined compliance of the MTS load frame, the crosshead system which included the

L-snaped gripping plates, and the loading nose attached to the rectangular steel bar was ex-

perimentally determined by compressing the loading nose directly on the ram. To prevent
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any damage to the ram's surface and to account for the base plate appendage of the test fix-

ture a one inch steel plate was actually used as the contacting surface. The only remaining

unaccounted for parts were the two supports. Consequently, a special three-point bend test

was conducted to include any support related displacements. A block specimen was ma-

chined, from 4130 steel heat treated to a Rockwell hardness of 40, to an overall length L=2.0

inches, a height of 2.0 inches, and a width of 1.0 inch. The block was then subjected to

three-point bend loading conditions with a span length of 1.5 inches. For this geometry, and

recalling that the supports and loading nose only had a hardness of 20, there will be negligible

bottom surface beam deflection and no indentation at the contact points. Therefore, any

measured displacement will be related to motions in the test equipment and fixture them-

selves and not associated with any beam response. Figure 47 shows how the measured

stroke motion (&,,) and displacement transducer reading (6_) varied as a function of the applied

load. When the load P was less than 13 kips an empirical relationship which fits the exper-

imental data is given by:

6_ = -5.3578x10 -s + 1.7268xlO-3p - 4.5208x10 -4P 2 + 6.4143x10-SP 3 - 4.3591xlO-6p 4

+ 1,1273x10-TP s

6 m = 1,8374x10 -5 + 1.0906xlO-2p - 4.5661x10-3p 2 + 1.1926xlO-3p 3 _ 1.8566xlO-4p 4

+ 1.6756xlO-SP s _ 8.0416xlO-Tp 6 + 1.5818xlO"sP 7

(5)

and when P was greater than 13 kips this relationship becomes:

6d = 3.0021x10 -3 + 1.1486x10-5p+8.5327x10-6p 2 - 1.6137x10-Tp 3

6 m = 8.1801x10 -3 + 1.0855x10-3P-1.6512x10-Sp 2 + 2.0153x10-7p 3
(6)

The two relationships given by equations (5) and (6) were used to calculate the displacements

unrelated to beam bending as a function of load intensity, which were then subtracted from

the stroke and transducer measurements. Consequently, the displacements which are pre-

sented in Appendix A, Figures 89 through 128, include the beam deflection plus unknown

amounts of indentation plus Ioca! deformations at the two supports and under the loading

nose. The load-displacement results are presented for both the damage initiation test and the

Experimental Investigation 124



ultimatefailure test. All of the figures, 89-128, illustrate an excellent repeatability in the curves

for the results of the two tests conducted with identical beam geometries.

The top surface displacements in the first four figures of Appendix A, 89-92 , are shown in

Figure 48 and demonstrate that the 0_ unidirectional beams have a nonlinear load-

displacement relationship for the four aspect ratios tested. In the smaller aspect ratio beams

the nonlinear behavior is not thought to be structure related but to be a result of nonlinear

contact effects and matrix nonlinearity in the vicinity of the loading nose. When the specimens

have a larger aspect ratio, the nonlinearity is thought to be related to the shear deformations

and the material nonlinearity due to the softening behavior of graphite/epoxy under axial

compression. For the large aspect ratio beams the response is governed by bending effects

and compressive bending stresses exist above the midplane of the beam. Consequently, the

softening behavior generally observed in uniaxial compression specimens is also seen in

beam specimens due to the compressive bending stresses.

The results presented in Figures 93-128 of Appendix A are the load-displacement curves for

the cross-ply and quasi-isotropic beams, All of these curves demonstrate a linear load-

displacement relationship up to the initiation of damage, disregarding the initial nonlinear

portion of the curves. The only exceptions to this type of behavior are seen for the 1.0 inch

span length cross-ply beam, and the 0.5 inch span length [0/+45/90"],r_ and [0/_.+60]z0s speci-

mens, in Figures 95, 108, and 122, respectively. Recall that the initiation of damage was de-

fined to occur when the applied loading I_rst experiences a reduction in magnitude. The initial

nonlinear portion of the curves is believed to be a result or" very localized contact related

deformations and unrelated to the beam's global response.

The applied load is plotted as a function of the indentation calculated from equation (4), 6M, for

all tested laminates in Figures 129 through 137 of Appendix A. The results tend to show the

local indentation at the top surface to be independent of the span length and the stacking se-

quence up until damage has been initiated. The indentation at the supports, 6,, can be ex-
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pressed in terms of the indentation at the top surface in the following manner. Assuming a

Hertzian type of pressure distribution at the contact points and a spherical indenter, the in-

dentation under the load nose, &N, will be proportional to the contact force raised to the two-

thirds power (Love [10]), i.e.,

6N = knP 213 (7)

where the proportionality constant, k., depends on the material system of the beam. Using

equation (7), the unknown indentation at the support points, _i, , can be expressed in terms

of the top surface indentation, 6N. Since the force at the supports is equal to one half of the

applied load on the top surface, the indentation at the supports, 3, is:

(8)

For the case of a cylindrical indenter, Sankar [37] showed that the indentation will be propor-

tional to the contact force raised to the one-half power. Therefore, for three-point bend ex-

periments the 2/3 power in equations (7) and (8) should be replaced by 1/2.

5.3.2 Ultimate Failure Loads

Figures 49 through 51 show the dependence of the maximum load on the span length-to-depth

aspect ratio and the type of laminate. As previously discussed in this chapter, the test matrix

was classified into four different groups. The results for the first group are presented in Figure

4g and illustrate the ultimate load as a function of aspect ratio for different classes of lami-

nates. When comparing the cross-ply results to the unidirectional 0° results it is observed that

the cross-ply laminates have a greater load carrying capacity for the smaller aspect ratios but

have a lower ultimate load than the unidirectional beam results as the aspect ratio becomes

large. The dependence of the ultimate load on the a/h aspect ratio for the two quasi-isotropic
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laminates shown in Figure 49, i.e., [0/±45/90_]z_ and [0f±60]_ _, is similar. For the larger as-

pect ratios the two quasi-isotropic stacking sequences have ultimate failure loads which are

comparable to the cross-ply beam results. However, as the span length-to-depth aspect ratio

is reduced the quasi-isotropic beams have larger ultimate loads in comparison to both the 0•

unidirectional and cross-ply beam results.

The second group of beams was classified on the premise of studying beam thickness effects

and the results for the ultimate load as a function of aspect ratio are shown in Figure 50.

According to the test matrix given in Table 1, the E0/±45/90_] and [0/+60] repetitive ply

groupings were used to lay-up laminated beams having three different overall thicknesses of

1.00, 0.60, and 0.24 inches. In Figure 50, the open symbols are for the E0/-t-45/90_] quasi-

isotropic laminates and the filled symbols are for the [0/+60 ] quasi-isotropic laminates. Also,

the circles correspond to the 1.00 inch thick beams, the triangles represent the 0.60 inch thick

beams, and the squares are for the 0.24 inch thick beams. Similar to what was stated above

for the quasi-isotropic laminates in Figure 49, for a given beam thickness the dependence of

the ultimate load on a/h is much the same between the [0/+45/90] and [0/±60] laminates.

The only exception being for the case of a 0.24 inch thick beam having an aspect ratio of 2.08

where the [0/_+60]_ beam's ultimate load is almost double that of the 10/_+45/90]_ beam. The

results presented in Figure 50 show that the beam's thickness significantly affects the re-

lationship between the ultimate load and the aspect ratio. This figure illustrates that for a

given a/h aspect ratio the three different beam thicknesses produce three different failure

loads. For example, for an aspect ratio of approximately 5.0 the ultimate failure loads for the

[0/+60] beams with thicknesses of 1.05, 0.6, and 0.24 inches were 10.51, 8.54, and 3.05 kips,

respectively. However, the difference in the failure loads is seen to decrease as the aspect

ratio of the beam increases. Consequently, the a/h ratio does not uniquelydescribe the failure

loads and caution must be exercised when using the span length-to-depth aspect ratio as a

nondimensional scaling parameter, especially for the case of small a/h ratios.
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Figure 51 illustrates the effect of grouping plies together on the ultimate load, i.e., the effect

of increasing the relative thickness of a given ply orientation with respect to the laminate

thickness. The laminates in the third classification group were considered and the results for

the ultimate load as a function of a/h are shown in this figure. The open symbols correspond

to the interspersed stacking sequence, whereas the filled symbols are for the grouped stack-

ing sequence. The [0/+45/90] laminates are represented by circles and the [0/+60] laminates

by triangles. For the range of aspect ratios tested and for both of the quasi-isotropic lami-

nates, grouping the plies together reduced the ultimate load when compared to the ungrouped

laminates having the same total number of plies. The percentage of load reduction was larger

for the [0/+45/90] laminates than for the ro/-+60] laminates except for the case of an aspect

ratio equal to 0.50. Also, the percentage of load reduction decreases as the aspect ratio of

both the quasi-isotropic beams is reduced. The [0/-I-45/90] laminates have a maximum re-

duction of 51% for the largest aspect ratio tested, decreasing to 0% for the smallest aspect

ratio. A 26% reduction is seen for the largest aspect ratio [0/_+60] beam and decreases to

approximately 15% for the remaining aspect ratios tested. It is also interesting to note that

as stated before the two different quasi-isotropic laminates have similar load carry capability

if the layers are distributed throughout the laminate.

5.3.3 Damage Susceptibility

The susceptibility of a laminated beam to damage when subjected to an applied load is a

measure of how easily damage Is induced. The damage susceptibility of the three-point bend

specimens was determined by investigating the dependence of the damage initiation load on

the aspect ratio for the different lay-ups. As in the case for the ultimate loads presented

above, the classification scheme for the test matrix is used for presenting the experimental

data in Figures 52 through 54. The damage susceptibility for different classes of laminates is

shown in Figure 52, beam thickness effects in Figure 53, and stacking sequence effects in

Experimental Investigation 130



,,,,,,-,%

(/1
Q.

°_

13_

35

3O

25

2O

15

10

O

O

[]

ULTIMATE FAILURE LOADS

DIFFERENT LAMINATE CLASSES

0 [0/45/-4.5/90125S

• [o/8o/-6o]3s s

[][o]
150

• [(0/90)8/(90/0)813S

0

n
o •

[]

0 1 2 3 4 5 6 7 8

a/h

Figure 49. Ultimate failure load ae a function of span length.to.depth aspect ratio for different
classes of laminates.

Experimental Investigation 131



r_

(3-

35

3O

25

2O

15

10

O

e

0

5

0

A
[] AO

A

o

ULTIMATE FAILURE LOADS

BEAM THICKNESS EFFECTS

O [0/45/-45/90125S

• [o/6o/-6o]35 s

A [0/45/--45/90] 15S

A [0/60/-60120S

rl [0/45/-45/9016 S

• [o/6o/-6O]8s

t •
0 5 10 15 20 25

o/h

Figure SO. Ultimate failure load u • function of span length.to.depth aspect ratio and beam
thickness effects,

Experimental Invesligation 132



35

o.
o__

{1.

3O

25

2O

15

10

ULTIMATE FAILURE LOADS

STACKING SEQUENCE EFFECTS

0 [0/45/-45/90125 s

• [o5/455/-455/90s]ss

z_ C0/60/-60135s

• [05/605/-60517s

o/h

A

0

lllt]llll

5 6

figure Sl. Ultimate failure load aa a function of span length.to-depth aspect ratio and stacking
sequence effects.

Experimental Investigation 133



Figure 54. From Figure 52 and for a large aspect ratio, the cross-ply beam is seen to be the

most susceptible to damage in comparison to the 0° unidirectional beam. For the smallest

aspect ratio tested, the _ unidirectional beam is more damage susceptible than the cross-ply

and quasi-isotropic laminates. When comparing the two quasi-isotropic laminates, Figure 52

shows that the [0/-I-45/90]as laminated beam is more susceptible to damage than the

[0/-l-60]==s beam when the span length-to-depth aspect ratio is greater than 2.50. When the

aspect ratio becomes less than 2.50 the dependence of the damage initiation load on a/h

demonstrates the [01+60]_ beams to be more damage susceptible than the [O/:J:45/90]z_

beams.

Figure 53 illustrates the dependence of the damage initiation load on the aspect ratio for the

six quasi-isotropic laminates having an interspersed stacking sequence. For the entire range

of aspect ratios tested, the 0.24 inch thick beams are seen to be the most damage susceptible

for a given a/h ratio. Also, the dependence of the damage initiation load on a/h is the same

for the [0/-1-45/90]= and E0/-I-60]zs laminates. The results for the 0.60 inch thick beams indicate

that the [0/-{-45/90]_= laminated beams have a lower damage initiation load than the

[0/-P60]z_s beams for a/h between 1.0 and 8.0, and are therefore more damage susceptible.

In comparison to the previous discussion for the ultimate failure loads, the beam thickness

effects on the dependence of the damage initiation load on a/h are seen to be even more

significant. In other words, for a given a/h the differences between the damage initiation loads

for the different beam thicknesses are greater than the differences seen in the ultimate failure

loads.

The effects of grouping plies together on the damage susceptibility are depicted by the results

in Figure 54. In this figure, the damage initiation load is plotted as a function of the aspect

ratio for the grouped and interspersed quasi-isotropic stacking sequences. Similar trends are

seen in the dependence of the damage initiation load on a/h as were described for the ulti-

mate failure loads. The grouped stacking sequences are observed to be more damage sus-

ceptible than the corresponding interspersed laminates. Also, for the larger aspect ratios,
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Figure 54 shows that the [0/4SJ -45/90] laminates are more susceptible to damage in com-

parison to the [0/60/- 60] laminated beams.

5.3,4 Damage Tolerance

Once damage is present in the laminated beam, how well it is tolerated with regard to ultimate

failure defines the beams tolerance to damage. A measure of a laminated beam's tolerance

to damage is the ratio of the load which produces the initial damage to the load measured at

ultimate fai!ure. A ratio equal to one would correspond to a beam configuraticn which is

considered to be highly damage intolerant. On the other hand, a value less than one would

mean the beam is still capable of carrying loads or resistant to the applied load once damage

has initiated. For the 0_ unidirectional beams the ratio of initial damage load to the ultimate

load was approximately equal to one, i.e., intolerant to damage, except for the case of an as-

pect ratio equal to 0.67, where this ratio was 0.89. As a result of the beam thickness effects

described above, comparisons between the different stacking sequences in Table 1 must be

restricted to beams having equivalent thicknesses.

The dependence of the damage tolerance, as defined above, on the beam's a/h aspect ratio

is shown in Figure 55 for the beams having an overall thickness approximately equal to 1.0.

There is some scatter in the data, especially for the cross-ply results, but it appears that for

a span length-to-depth aspect ratio greater than 5.0 and for the three-point bend specimen

configuration these laminates will have a low damage tolerance. When the aspect ratio is

reduced, the beam's resistance to the applied load increases after the initial damage has

occurred until the span length-to-depth aspect ratio becomes equal to 1.0. The damage tol-

erance then begins to decrease for smaller span length-to-depth aspect ratios, e.g., the ratio

of the damage initiation load to the ultimate failure load for the r.o/__.45/90]z _ beams was equal

to 0.81 for a/h=1.0 and 0.g2 for a/h=0.5. The results presented in Figure 55 also show that
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for aspect ratios greater than 1.0 the [OJ60_/-- 60_]7s laminated beam has the largest damage

tolerance. For aspect ratios smaller than 1.0, the [0_/45J-45Jg05] _ grouped stacking se-

quence is more tolerant to damage than the other 1.0 inch thick laminates. However, for a/h

greater than 3.0 this laminate has a low damage tolerance. When comparing the two inter-

spersed quasi-isotropic laminates, the dependence of the damage tolerance on the a/h aspect

ratio is very much the same. In addition, for the range of aspect ratios shown in Figure 55, the

cross-ply beam in general is the least tolerant to damage.

For the case of a 0.6 inch thick beam, the results are presented in Figure 56. With the ex-

ception of a very small a/h aspect ratio, the [0/__+60]z0s laminate is seen to have a very low

damage tolerance. The dependence of the damage tolerance on a/h for the [0/+45/90]_ss

beam has a contrasting behavior to that of the [0/___60]z= beam and is very similar to the 1.0

inch thick [0/_.+45/90]z,_ beam. The [0/+45/90]_ stacking sequence is seen to be damage

intolerant for a large a/h but as a/h decreases the tolerance to damage increases. Figure 57

illustrates the dependence of the damage tolerance on the aspect ratio for the 0.24 inch thick

beams. The results indicate that both the [0/__.45/90]_ and the [0/___60]_ laminates have a

very low damage tolerance for the entire range of aspect ratios tested. The only exception

being, as in the case of the [0/__+60]z_s beam discussed above, for the [0/__.60]_ beam having

an a/h aspect ratio equal to 2.08.

5.4 Damage Descriptions

Atter the specimens were tested and their damage initiation andmaximum failure loads re-

corded, they were inspected for damage using the optical microscope as described previ-

ously. Flexural failure mechanisms, which have been reported in the literature and discussed

in Chapter 2, can generally be classified in terms of three basic modes: tensile mode,
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compressive mode, and/or shear mode. Combinations of the three basic modes have also

been observed in failed specimens. The predominant combined mode discussed in the liter-

ature involves compression and shear in the form of kink bands in unidirectionally-aligned

carbon-fiber reinforced plastic beams and has reportedly led to interlaminar failures [39]. It

was also stated that for a constant span length and varying beam thicknesses, thin laminates

generally failed on bottom due to tensile bending stresses, whereas, thick laminates failed

near the top due to contact stresses [42]. The visual inspection of the damaged specimens

was performed to determined which laminate geometries given in Table 1 were associated

with each of the bas=c modes stated above. Also, the inspection was carried out to indentify

any previously unreported damage modes corresponding to a particular geometry.

5.4.1 Unidirectional Beams

For the case of a 0_ unidirectional beam having an aspect ratio of a/h = 7.33 the initiation of

damage was very localized, located directly under the loading nose, and in the form of fiber

buckling. Subsequently, testing the same beam conl]guration monotonically to failure

produced shear kink bands which originated at the top surface in the vicinity of the applied

load. In addition to the kink band formations, delaminations which extended to the end face

of the beam were seen at approximately h/3 down from the top surface and at the midplane

(z=O.O). The observed kink band appeared to occur after the beam delaminated at the

midplane. The midp_ane de_amination in effect created two thinner beams which under the

three-point bend loading experienced an increased compressive bending stress which

buckled the fibers. Also, it should be noted that the delamination or longitudinal split in the

xy-plane did not remain at a constant z-location across the width of the specimen but seemed

to cross from one layer to another, as shown in Figure 58.
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Figure 58. Longitudinal and transverse cracks in a unidlractional beam.

Experimental Investigation 144



When the span length-to-depth aspect ratio of a 0_ unidirectional beam was reduced to 4,

damage was initiated by longitudinal cracks occurring at approximately 1/3 of the beam's total

thickness down from the top surface, Ultimate failure for this beam geometry corresponded

to the longitudinal cracks described above forming a delamination. There were also through

the thickness or transverse cracks in the xz-plane of the beam (see Figure 58) which traversed

the entire beam length. However, there was no evidence of fibers buckling as in the case of

the previous beam. This may be attributed to the existence of large compressive stresses

along the fiber direction for large a/h ratio specimens. Similar types of damage were ob-

served when the supports were located 1.0 inches apart which corresponded to an aspect

ratio of 1.33. Short longitudinal cracks were seen at 1/3 of the beam's thickness down from

the top and at the midplane but no large delaminations were present. A transverse crack

through the thickness, as depicted in Figure 58, was the predominant form of damage. There

was no distinquishable difference between the observed damage states in the beam tested for

damage initiation and in the beam tested up to ultimate failure. Further reducing the span

length-to-depth aspect ratio to 0.67 yielded much the same observable damage but with the

addition of short longitudinal cracks appearing near the bottom surface between the two

supports.

5.4.2 Cross-Ply Beams

The next series of beams to be visually inspected under the microscope were the

[(0/90)=/(90/0)=]=s cross-ply beams for which only the monotonic test to failure was conducted.

For the specimen tested with an aspect ratio of 5.73, a kink band consisting of buckled fibers

in the (7' plies under the loading nose (similar to the unidirectional beam) and matrix cracks

in the adjacent 90_ plies were observed. The kink band was located in the vicinity of the ap-

plied load and terminated at the first 90/90 interface, 16 plies down from the top surface, where

a delamination was seen as depicted in the photograph of Figure 59. A second delamination
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was present at the first 90/90 interface past the midplane with no evidence of fiber buckling

or matrix cracking. Positioning the supports for an aspect ratio of 3.12 resulted in similar

forms of damage but having a different location in the beam. Sandwiched between two de-

laminations which occurred at depths corresponding to 32 and 48 ply thicknesses was the

formation of a kink band. A second kink band was seen to be located at a depth of 80 plies

which traversed 32 plies before another delamination was present. Both bands of broken fi-

bers and matrix cracks were located near the midspan of the beam.

The type of damage observed in the specimens changed when the span length-to-depth as-

pect ratio was reduced to 1.04. The type of damage was predominately shear related and

there was no longer any evidence of kink band formations. Matrix cracking in the 90" plies

and short interlayer seperations appeared throughout the entire depth of the beam between

the support locations as shown in Figure 60. For the beams tested with an aspect ratio equal

to 0.52 there was severe crushing of the beam under the loading nose. The damage was

concentrated around the contact area with no evidence of damage beneath the first grouping

of 16 plies.

5.4.3 Quasi-lsotropic Beams, [0/45/-45/90]

All of the remaining beams to be investigated were quasi-isotropic laminates. For the

[0/-1-45/90]_ specimens, the damage states were primarily shear related in the form of matrix

cracks and delaminations. When the aspect ratio was equal to 5.5, the damage initiation test

resulted in a delamination at the third 90/0 interface from the top surface of the beam. For the

monotonic test up to failure, fiber breakage was seen in conjunction with matrix cracking in

the off-axis and 90" layers. There were also short longitudinal cracks apoearing at the inter-

faces adjacent to the matrix cracking. This type of damage started under the loading nose

and continued along an approximately 45= path until the fourth repeating ply sequence was
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Figure 5g. Kink band formation in • cross-ply beam.
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Figure 60. Matrix cracke and short delaminetiona in • cross.ply beam.
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reached where a delamination occurred at the 45/-45 interface. Ultimately, the beam com-

pletely delaminated at the midplane.

The predominant damage seen for the case of an aspect ratio equal to 3.0 was in the form of

delaminations. In the damage initiation test the beam delaminated at the fifth 0/45 interface

down from the top surface. The second test, which was up to failure, produced additional

delaminations in the fifth repetitive ply sequence and at the midplane. For the beams tested

with an aspect ratio equal to 1.0, damage was initiated by matrix cracking in the off-axis plies

located in the top two ply groupings as shown in Figure 61. Post-test inspection of the beam

loaded to ultimate failure showed extensive damage in the top eight layers in the vicinity of

the applied load. There were matrix cracks in the off-axis plies and a large delamination at

the first 90/0 interface. The matrix cracking continued beneath this delamination and was

observed in other off-axis and 90* plies extending all the way to the support location at the

bottom surface. For an aspect ratio of 0.5, there was no discernable difference between the

damage initiation test and the ultimate failure test as both specimens were severely crushed

in the first 24 layers under the load.

The next two series of beams to be visually inspected for damage were the [0/-I-45/g011= and

[0/__.45/90]= laminated beams. These two laminates contained the same basic ply grouping

as the previous ones but had overall heights of 0.60 and 0.24 inches, respectively. Conse-

quently, a broader range of span length-to-depth aspect ratios was achieved as shown in Ta-

ble 1. For the [0/_+45/9011_ laminated beam having an aspect ratio of 9.17, the damage was

similar to the [0/+45/90]_ beam tested with an aspect ratio equal to 5.5. Damage was initi-

ated by a delamination at the third 90/0 interface from the top surface. The ultimate failure test

produced matrix cracks in the +__45° and 90* plies which started where the loading nose lost

contact with the top surface and terminated at a depth of 12 plies.

Moving the supports to achieve an aspect ratio of 5.00 resulted in a combination of delami-

nations and matrix cracks. The specimen tested for damage initiation delaminated at the
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Figure 61. Matrix cracking in the off-axis pllea of a quesl-lsotropic beam.
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interfaces adjacent to the 90° plies located at the midplane as shown in Figure 62. In addition

to this delamination, the presence of matrix cracks in the 90° plies located at the beam's

midplane were observed in the specimen tested up to ultimate failure. The observed damage

for the case of an aspect ratio equal to 1.87 was much the same with the initial delamination

occurring at the midplane. However, the ultimate failure test showed extensive matrix crack-

ing in the 9(7' plies located away from the midplane in comparison to the beam having an as-

pect ratio of 5.00 where the cracks were concentrated at the midplane. As described for the

0.5 aspect ratio 1.0 inch thick [0/±45/90]z,_ beam, for an aspect ratio of 0.83 there was severe

crushing and delaminations in the top 16 layers under the point of load application.

The damage in the 48-ply 0.24 inch thick [0/-I-45/90]u laminated beams can be characterized

as follows. When the span length-to-depth aspect ratio was equal to 22.92, visual inspection

of the specimen tested for damage initiation yielded no observable damage. The second

specimen tested experienced ultimate failure as a result of extensive damage located at the

back-face. This was in the form of a tensile failure mode with the 0° fibers breaking and nu-

merous delaminations in the bottom half of the beam, all of which occurred at interfaces as-

sociated with a O" ply. Also, there were matrix cracks located in the +45 ° off-axis plies and

the 90° plies located below the midplane. For the beam geometries tested with an aspect ratio

of 12.50 the observed initial and ultimate failure damage states were very similar to the dam-

age described for the previous beam geometry.

In cases where the beam had an aspect ratio equal to 4.17 the damage was initiated by matrix

cracks in the third 9_ ply located from the bottom surface and half-way between the load and

support points as depicted by the photograph in Figure 63. In conjunction with the matrix

cracks there were short delaminations at the interfaces located above and below the 90_ ply

stated above. When an identical specimen geometry was tested up to ultimate failure the type

of observed damage was the same as seen in the damage initiation test but was more ex-

tensive throughout the beam. The damage state in the 2.08 aspect ratio beams was much the

same as described for the 4.17 aspect ratio specimens.
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Figure 62. Delamlnatt_ns near the midplane of a quasi.lsotropic beam.
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5.4.4 Quasi-lsotropic Beams, [0/60/-60]

The next series of laminated beams tested were also quasi-isotropic but differed in that their

stacking sequence was based on a 0/-t-60 ply grouping. The thickest beams studied were the

[0/-I-60]_._ laminates which were approximately the same thickness as the 1.0 inch thick

[0/+45/90]z = beams. When the span length-to-depth aspect ratio was equal to 5.24 the dam-

age, shown in Figure 64, could be characterized by an initial delamination at the third -60/0

interface from the top surface. Visual inspection of the beam after being tested to ultimate

failure showed additional damage with a kink band starting to form under the load point.

Below the initial delamination there were broken fibers in the next three 0° layers in conjunc-

tion with matrix cracks in the -I-6(7' plies and several small delaminations. The type of damage

described above resembles the mode observed for the [0/-t-45/90]ns beam having an aspect

ratio of 5.5.

When the 2.86 aspect ratio beams were tested, the primary form of damage was a delami-

nation which was comparatively the same as in the [0/+_.45/90]z_s specimens. The damage

initiation test showed a delamination occurring at the fifth -60/0 interface relative to the top

surface. Several other delaminations were seen when a second specimen was tested up to

ultimate failure. Reducing the aspect ratio to 0.95 produced initial damage in the form of a

delamination at the first -60/0 interface. In the test for ultimate failure the beam was severely

crushed under the applied load. Moving the supports for an aspect ratio of 0.48 resulted in a

similar damage state with crushing of the top two ply groupings for both the damage initiation

test and the ultimate failure test.

The [0/+60]_ beams tested had the same span length-to-depth aspect ratios as the

[0/-t-45/9011ss beams listed in Table 1. Figure 65 illustrates that the initial damage for the 9.17

aspect ratio beams was in the form of matrix cracking in the top 4-60 _ ply grouping located

approximately where the loading nose lost contact with the top surface. A delamination was

Experimental Investigation 154



x=3L/8

z=0.465 in.

Figure 64. Delaminstton near the top surface of a quast.laotropic beam.
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also seen at the first -60/0 interface adjacent to the matrix cracks. Additional damage oc-

curred in the ultimate failure test when the third and fourth 0 ° layers from the top surface

buckled. When the span length-to-depth aspect ratio was equal to 5.00 and the damage initi-

ation test was performed, the specimen delaminated at the seventh -60/0 interface from the

top surface. The ultimate failure of an identical specimen produced added damage in the form

of a kink band with fiber buckling and matrix cracks seen in the layers above the initial de-

lamination. The only observable damage in the specimens having an aspect ratio equal to

1.67, for both the initiation of damage and ultimate failure tests, was a small delamination at

the fourth -60/0 interface under the loading nose. For the case of a 0.83 aspect ratio specimen,

damage was initiated by a very localized delamination directly under the load at the first and

second 0/60 interface from the top surface. Severe crushing under the load, fiber breakage,

and numerous delaminations in the first 24 plies were seen in the specimen tested to failure.

Visual inspection of the failed [O/_.+60]u specimens produced the following forms of damage.

The initiation of damage in the 22.92 aspect ratio beam was a delamination located at the fifth

0/60 interface from the bottom surface. Ultimate failure for this beam geometry was associ-

ated with back-face damage consisting of a combination of tensile and shear failure modes

with fiber breakage, matrix cracking, and delaminations in the bottom five ply groupings.

Positioning the supports for an aspect ratio of 12.50 changed the initiation of damage to a short

delamination at the midplane and was located approximately half-way between the load and

support points. The specimen which was tested monotonically to failure showed very little

additional damage other than the type seen in the damage initiation test. It should be noted

that it was difficult to assess the extent of damage in these specimens because of the large

number of voids that were present.

In the specimen tested up to the initiation of damage and having an aspect ratio equal to 4.17,

cracks were observed in the -t-6_ plies located at the midplane as shown in Figure 66. Testing

a second specimen to failure produced the same type of damage as was seen in the damage

initiation test. Similar damage states were observed when the span length-to-depth aspect
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ratio was reduced to 2.08 but the damage was more extensive. At ultimate failure the matrix

cracks in the _+.60° plies extended along a line from the load point to the support point.

5.4.5 Quasi-lsotropic Beams, Grouped Stacking Sequence

By grouping five plies together having the same fiber orientation, e.g., [0s/45s/- 45s/90_]ss, the

overall height of the beam did not change in comparison to the [0/+45/90]z,,s laminate. This

was also true for the 210 ply laminates based on the 0/+60 ply grouping. For the grouped

[0=/45s/- 45=/90=]=s stacking sequence and an aspect ratio of 5.5, the initial damage is shown

in Figure 67 and was a combination of delaminations and matrix cracks in the 9_ and off-axis

layers located at the midplane of the beam and close to the midspan, The same type of

damage was seen In the specimen tested monotonically to failure with the delaminations and

matrix cracks being larger in number. The specimens having a [05/60s/-60siTs grouped

stacking sequence and tested with an aspect ratio equal to 5.5 had similar damage charac-

teristics. Damage in the beams having a grouped stacking sequence differed from the inter-

spersed case by not having fiber breakage in the top 0° plies. Also, in contrast to the damage

being located near the top surface for the interspersed beams, the damage was concentrated

more at the midplane for the grouped stacking sequence.

For the case of a beam having an aspect ratio of 3.0, the observed initial damage in both of

the grouped laminates was in the form of matrix cracks in the 9_ and oft-axis plies located

at the midplane. The ultimate failure of the specimens was associated with an extensive

branching or staircase pattern of matrix cracks and short longitudinal cracks at the adjacent

interfaces and is illustrated in Figure 68. The effect of grouping plies together on the damage

characteristics was a change from a predominantly intedaminar shear mode for the inter-

spersed specimens to a matrix shear mode.
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Figure 66. Matrix cracks In the off-axis plies of a quasi.lsotroplc beam.

Experimental Investigation 159



x=L/2

Figure 67. Matrix cracks end delemimltione in • queskiootropic beam.

Experimental Investigation 160



Z

DELAMINATION

/"

/ ×

MATRIX CRACK

Figure 68, Staircase pattern of matrix cracks and short delaminations.

Experimental Investigation 161



Testing the 1.0 aspect ratio specimen, and conducting the test for damage initiation, produced

the same type of damage as described for the 3.0 aspect ratio beam. However, the matrix

cracks were located in the first ply grouping near the applied load. The ultimate failure test

showed no additional damage. The observed damage modes for the grouped stacking se-

quence were very similar to the previously described damage modes in the beams having an

interspersed lamination. When the span length-to-depth aspect ratio was equal to 0.5, the

initial damage consisted of the same matrix cracks as described for the case of an aspect ratio

equal to 1.0. When identical specimens were tested up to failure, the beams experienced

crushing in the first repetitive ply sequence, e.g., 0J45s/-45Jg0s and O_/60J-605. Compar-

atively, this was the same type of damage as described for the interspersed beams. Conse-

quently, increasing the effective layer thickness by grouping plies together did not significantly

alter the observed damage states for the shorter span length-to-depth aspect ratios of 1.0 and

0.5.

5.5 Summary

The experimental investigation was conducted in order to define the damage states in various

laminated beam geometries subjected to three-point bend loading conditions. The exper-

imental data consisted of top and bottom surface displacements at the midspan and the ap-

plied load. After reducing the data, load-displacement and load-indentation plots were

generated and the damage initiation load and ultimate failure load defined. The behavior of

the load-displacement and load-indentation curves was categorized as being linear Up to the

initiation of damage with the exception of the 00 unidirectional beams. The dependence of the

initial damage and ultimate failure loads on the beam's span length-to-depth aspect ratio were

identified. Also, the damage susceptibility and the damage tolerance of the tested laminates

Experimental Investigation 162



were discussed. In general, it was shown that the damage initiation load and ultimate failure

load decreased as the beam's a/h aspect ratio increased.

To investigate the effects of stacking sequence, beam thickness, and relative layer thickness

on the load dependencies stated above, the different laminated beams in the test matrix were

classified into four groups. The results showed that there were significant beam thickness

effects and that the a/h aspect ratio did not uniquely define the damage initiation nor the ulti-

mate failure load. For a given a/h aspect ratio, the 0.24 inch thick beams had the lowest ulti-

mate load and were the most susceptible to damage. However, the beam thickness effects

described above decreased as the aspect ratio increased. Also, it was shown that increasing

the relative layer thickness in a laminated beam increased its damage susceptibility and de-

creased its load carrying capacity. In addition, the grouped [0_/45_/-45s/g05_]_ s beams had

lower ultimate loads and were more susceptible to damage than the r05/60 J - 60_17s beams.

When the laminates had an interspersed stacking sequence and the same thickness, their

load carrying capabilities were similar. For the laminates having a thickness approximately

equal to 1.0 inches, the C0=/60s/- 60siTs stacking sequence was the most tolerant to damage,

whereas the cross-ply beams were the least tolerant. In general, the damage tolerance was

seen to decrease with increasing aspect ratio.

A post-test visual inspection of the damaged specimens was conducted using an optical mi-

croscope and photomicrographs were taken to document the damage. The damage which

was observed indicated that several different mechanisms can occur depending on the beam

geometry and stacking sequence. The dependence of the type of damage on the beam con-

figuration is summarized in Table 2 for the unidirectional and cross-ply beams, and in Tables

3 and 4 for the r0/+45/90] and [0/+60] quasi-isotropic beams, respectively. The observed in-

itial damage in each specimen is indicated by a superscript "i', whereas, the remaining

marked boxes correspond to subsequent damage seen in the ultimate failure test. Also, when

the observed damage was concentrated at one particular location, the location is noted in
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parentheses.In specimens where the damage was extensive or occurred at several different

locations, no mention is made of any location.

The 0* unidirectional orthotropic beams failed by either buckling of fibers and delamlnations

or transverse splitting, The change in the observed damage from a midspan delamination to

a transverse split occurred when the span length-to-depth ratio became less than 4.0. The

appearance of kink bands and delaminations were typical for the higher aspect ratio cross-ply

beams. For the cases when the span length was less than 3.0 inches, matrix cracking in the

00 ° plies was the predominant form of damage. For the quasi-isotropic laminates, the initial

damage states were comprised of either delaminations, matrix cracks in the off-axis and 90 °

plies, or a combination of these two. Initial damage in the form of delaminations was primarily

seen in the interspersed stacking sequences and when the overall beam thickness was equal

to 1.0 and 0.6 inches. When a grouped stacking sequence was used and when the 0.24 inch

thick interspersed laminated beams were tested the initial damage was generally in the form

of matrix cracks in the off-axis plies. Also, for the 0.24 inch thick specimens having an aspect

ratio equal to 22.92 or 12.50, a tensile failure mode was observed with damage occurring at

the back-face and fibers breaking in the bottom 0° plies. Based on these observations it was

expected that a detailed investigation of the local stress distributions would be required in

order to explain the damage seen in the laminated beams.
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Chapter Vl

Analytical/Experimental Correlation

The results of the experimental program for testing laminated beams under quasi-static

three-point bend loading conditions were presented in the previous chapter. The post-test

inspections of the damaged specimens yielded the primary failure modes and types of dam-

age which occurred in the beams. In order to correlate the analytically predicted stresses and

displacements, using the solution procedure given in Chapter 3, with the experimental data

the applied boundary conditions must simulate the actual test conditions as accurately as

possible. The solution previously derived was based on a stress formulation in the math-

ematical theory of elasticity with the tractions being prescribed on the boundary. Therefore,

the applied tractions must represent the manner in which load was introduced into the spec-

imens during testing. The loading nose and supports have a finite radius of curvature creating

contact between a rigid cylinder and a laminated beam. No attempt is made here to explicitly

solve the associated mixed boundary-value contact problem but merely to utilize previously

published results to model the traction distributions in the contact region.
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6.1 Modelling of Boundary Conditions

6.1.1 Elliptical Stress Distribution

When the radius of the indenter, i.e., loading nose and supports, is small compared to the

curvature of the target, i.e., beam, the Hertzian solution for the contact stress distribution on

an orthotropic half-plane can be used. This is an elliptical type of distribution [34] which can

be expressed as follows:

2P 1 - 4 cI <x <c I+_-f(x)l - Tcdb _ -- -2

d
= 0 O< x <c I - "-_

(1)

where P is the applied contact force, b is the beam's width, c_ is the distance from the origin

to the center of the ellipse, and d is the contact length (see Figure 69). The subscript i ranges

from 1 to 2 and corresponds to the top and bottom surfaces, respectively. For three-point bend

L
loading conditions, c_ = _-. Following the solution procedure in Chapter 3, equation (1) must

be written in the form of a Fourier series expansion and in terms of the nondimensional co-

ordinate system. The Fourier series coefficients were determined using the Guassian

quadrature numerical integration technique with the following result:

M

2P 2#
f'({) = - b'--d" + -_- w_(tn) cos Pm{ (2)

.J
tw=l

where
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cos o ',t (3)

and where w. and t. are the corresponding Gauss weights and points, respectively. The re-

maining quantities are the same as previously defined in Chapter 3, e.g., M =400 terms which

was determined based on the convergence study. As shown in Figure 69, the major axis of

the elliptical stress distribution is proportional to the applied load and the minor axis is equal

to the associated contact length.

6.1.2 Contact Length

A relationship between the applied contact force and the resulting contact length was derived

by Sankar [37] for the contact between a rigid cylinder and an orthotropic beam. The solution

was obtained by considering approximate Green's functions for the surface displacements in

an orthotropic half-plane and subsequently superposing these with beam theory deflections.

His results are presented here and were implemented to theoretically determine the contact

length for a given load, The contact length is related to the load and beam material properties

by:

2
d = (4)

where

Ra I = _ bh 3 (5)= 4Ell

1 ,_I + '_2

kc- 2khR kh- _rE3 (6)
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and where R is the indenter radius. The beam dimensions b, h, and a were given in Figure

4, and _._.zare the roots to the following characteristic equation:

$11_.4 - (2S13 + $55)_.2 + $33 = 0 (7)

where the Sq are the compliance terms in the principal material directions. It should also be

noted that for a small indenter radius the contact length of equation (4) may be approximated

using the following relationship:

d _ 44,_P (8)
k/ "c

For the purpose of correlating the experimental data with this analysis, an estimate of the

contact length was obtained experimentally by placing pieces of carbon paper and graph pa-

per between the loading nose and the beam's top surface. The decision to verify the theore-

tical contact length was made after the test program was initiated. Consequently, the contact

lengths for the 0" unidirectional, cross-ply, [0/+45190]==, and the F05/45J -- 45Jg0s]=s laminates

are not included in the experimental results. For the remaining stacking sequences in Table

1, the carbon replica of the contact patch was measured and compared with the value from

equation (4). The results are given in Figure 70 for all of the aspect ratios tested and for both

the damage initiation test and the ultimate failure test. The results shown in Figure 70 illus-

trate a satisfactory correlation between theory and experiment for the contact length, espe-

cially for the lightly loaded specimens. The scatter in the experimental data may be attributed

to the beam's textured surface finish. Consequently, it was difficult to exactly measure the

contact length due to the ill-defined boundaries of the carbon transferred to the graph paper

near the edge of the contact area. The discrepancy which occurred for the higher load levels

is thought to be the result of damage and crushing of the beam's top surface. It should also

be noted that the experimentally measured contact length did not appear to depend on the

stacking sequence of the beam.
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6.2 Displacements

The elliptical traction distribution given by equation (2) and the contact length given by

equation (4) were used in analytically predicting the beam displacements and stresses. The

elasticity solution was based on the assumption of linear elastic material behavior but

equation (4) shows that a nonlinear relationship exists between the applied load and the

contact length. To account for this nonlinearity, a step-wise incremental loading procedure

was implemented, where for a given applied load increment the corresponding contact length

was calculated using equation (4). The top and bottom surface displacements were then cal-

culated at the midspan and then another load step was used. Essentially this procedure

modelled the nonlinear response in a piece-wise linear fashion.

6.2.1 Midspan Deflection

The load versus displacement plots in Figure 89-92 of Appendix A are the experimental results

for the 0_ unidirectional beams corresponding to the four different aspect ratios listed in Table

1. The incremental procedure discussed above was used to analyze the unidirectional beams

and the theoretical midspan displacements are compared to the experimental results in Fig-

ures 71-74. The experimental procedure described in Chapter 5 measured displacements at

both the top and bottom surfaces of the beam. Therefore, the elasticity solutions for the w

displacement were calculated at z equal to h/2 and -hi2 (see Figure 4). As discussed in

Chapter 5, the experimental curves have been corrected for machine and fixture related dis-

placements.

The results presented in Figure 71 are for an aspect ratio equal to 7.33. Reasonably good

agreement between the theoretical predictions and the experimental data is demonstrated in
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the initial linear portions of the plots. This is true for both the top and bottom surface dis-

placements. For beam geometries corresponding to aspect ratios of 4.00, 1.33, and 0.67

inches, the load versus displacement relationships are shown in Figures 72, 73, and 74, re-

spectively. In specimens having small alh aspect ratios, the beam's response is governed

by local deformations and the bending effects are negligible. Therefore, the poor correlation

between the elasticity solution and the experimental displacements is believed to partially be

a result of local nonlinear effects at the support points and under the loading nose. Also, the

damage described in Chapter 5 indicated the existance of a three-dimensional stress state.

Consequently, the two-dimensional linear elastic analysis cannot accurately predict the local

displacements for these particular beam configurations. In addition, there is some uncertainty

in the experimentally measured quantities and the actual boundary conditions associated with

the test environment. Similar discrepancies were seen between the experimental and the-

oretical displacements in the other laminated beams which were tested.

6.2.2 Indentation

In the classical problem considered by Hertz [2], i.e., contact between two solid isotropic

bodies, the amount of indentation was defined as the relative displacement of the two centers

of mass of the two contacting bodies. This quantity was discussed in Chapter 1 to be pro-

portional to the contact force raised to the two-thirds power for both isotropic bodies [2] and

for graphite/epoxy laminates [1] with a spherical steel indenter.

Sankar [37] considered the contact problem between a rigid cylinder and an orthotropic beam

as previously described in Section 6.1.2 for determining the contact length. In addition, Sankar

derived an expression for the amount of indentation at the top surface of the beam. This ap-

proach was based on modifying an orthotropic half-plane solution to account for the beam
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deflection. The equation derived by Sankar [37] for the indentation in an orthotropic half-plane

is given by:

=
=n lid "--all2

where d is the contact length given by equation (4) and kh is defined in equation (6). For a

given contact length, d, the indentation in an orthotropic beam was derived by Sankar [37] to

be equal to:

ah
=b -- (19)

Ykcd2
1+--

4

where y and kc are given by equations (5) and (6), respectively. Sankar noted that the lower

limit on the beam's span length-to-depth aspect ratio was approximately 8 for this technique

to be valid. This was based on using classical beam theory as an approximation to the global

response. An upper limit was stated to exist which corresponded to the case of a very slender

beam whose response was governed by beam deflections and not the local indentation.

The amount of indentation can also be obtained using the elasticity solution presented in

Chapter 3. The following expression which was used assumes the indentation to be equal to

the difference between the top and bottom surface displacements at the midspan of the beam,

i.e.,

=e = w(Lt2, hi2) - w(L/2, -hi2) (20)

The use of equation (20) is analagous to the experimental procedure described in Chapter 5

which led to the results illustrated in Figures 129-137 of Appendix A. Qualitatively, the exper-

imental results in Figures 129-137 indicate the indentation to be independent of the span
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length-to-depth aspect ratio and also independent of the stacking sequence. In Figure 75, the

relationships between the applied load and the indentation calculated from equation (20) are

shown for a 0 ° unidirectional beam having various aspect ratios. For a/h > 1, the theoretical

results presented in this figure demonstrate the insensitivity of the indentation to the aspect

ratio as stated above for the experimental results. However, a poor correlation between the

elasticity solution and the experimental data is illustrated in Figure 76. The results depicted

are for a 0° unidirectional beam having a 3.0 inch span length which corresponds to an aspect

ratio of 4.0. Sankar's solution given by equation (19) is also shown in Figure 76 and also re-

sults in a large discrepancy between theory and experiment. Similar behavior was seen in

the analytical/experimental correlation for the other laminates.

Predictions for the indentation based on Sankar's equation are larger than the experimental

values, whereas the elasticity solution for a laminated beam underestimates the indentation.

The discrepancy between Sankar's theory and the experiment is thought to be partially due

to approximating the global response by the classical beam theory. The results from the

elasticity solution developed in the present study are based on the difference between the top

and bottom surface displacements. Consequently, the same correlation difficulties which

were discussed for the midspan deflection also apply to the indentation.

The results presented for the midspan beam deflection and the top surface indentation illus-

trated the difficulties encountered in achieving a good correlation between theoretical pred-

ictions and experimental data. Numerous attempts aimed towards improving this correlation

were made. Analytically, the elasticity solution for the w-component of displacement was

verified using the results from a three-dimensional FEM model for a 0_ unidirectional beam.

Satisfactory agreement was seen for the z-displacement along the entire span length and for

both top and bottom surfaces. Analytically and experimentally; displacements must be cal-

culated and measured relative to some fixed point in space in order to be meaningful. The

elasticity solution developed in Chapter 3 assumed rigid supports and a rigid loading nose,

whereas in the test environment the load frame and test fixture are nonrigid. However, the

Analytical/Experimental Correlation 181



v
V

I1

25

2O

15

10

0

0.000

[0] 150 BEAU

a/h=7.33

-- -- a/h=4.00

o/h= 1.33

-- -- - a/h=0.67

..... a/h =0.33

ll ' /l_',,a/h,mO.O

• I , I ' I I I _ I I I i i, i I I 1 ' ' I I I I I _ 1 I t I I I I I I

0.010 0.020 0.030 0.040 0.050 0.060

(in.)

Figure 75. Elasticity solution lor Indentation In a unidirectional beam and different aspect retiol,

Analytical/Experimental Correlation 182



25

o_
om

EL

[01150 B_, o/h--4.0

2O

15

10

0

0.000

EL._3_CITY

EXPERIMENT

t , I ' I I I ' ', ', 1 . I : ' I I I t t I I I t I: ', l ', I ' ' I ' I ' ' I

0.010 0.020 0.050 0.040 0.050 0.060

A (in.)

Figure 76. Comparison between theory and experiment for Indentation in a unidirectional beam
having a aspect ratio of 4.0.

Analytical/Experimental Correlation 183



effects of a nonrigid load frame and test fixture were presumably taken into account as dis-

cussed in Chapter 5. Subsequently, it was verified that the experimental and analytical results

were measured relative to the same point. Nevertheless, as previously stated there is still

some uncertainty in the experimentally measured quantities and the modelling of the actual

boundary conditions.

6.3 Damage Initiation

The objective of the present study is to develop methodologies which can be used to obtain

a better understanding of damage in laminated composite beams. A combined

experimental/analytical approach is used where the analytical procedure for calculating ply-

level stress states was presented in Chapter 3. For the beam configurations given in Table I,

the damage susceptibility, ultimate failure loads, and initial damage modes were exper-

imentally determined and the results presented in Chapter 5. The experimental results and

an analysis of the different test specimen geometries can both be used to rank the damage

susceptibility of the different laminates and capture the different damage modes. In correlat-

ing the experimental and analytical results, the discrepancies discussed above between the

experimental and theoretical displacements are not expected to affect the accuracy of ana-

lytically ranking the different laminates.

Correlating the predicted stress distributions with the initation loads for different damage

states can be approached several different ways. One approach is to choose a component

of stress or combination of stresses, on the basis of one experiment, which might have caused
z

initiation of damage at a given load level. The experimentally measured damage initiation

load is then used to analytically determine the magnitude of the chosen stress component at

the damage site to be used in predicting the damage initiation load for the observed mode.
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On the basis of this criterion, load magnitudes are then calculated which would cause damage

initiation in other specimen geometries. An alternative approach is similar to the procedure

described above but averages the results from all specimen geometries that have the same

type of initial damage. The damage criterion is then based on the average value of the chosen

stress component, .and the analysis applied to beam geometries which were not tested to

determine their damage initiation load. The predicted loads are then plotted as a function of

the span length-to-depth aspect ratio, a/h, to use as damage initiation envelopes. If there are

specimens which exhibit the same type of damage for a given range of a/h aspect ratios then

the predictive model should produce a damage envelope which agrees with the experiments.

If the type of damage changes beyond a certain range of a/h aspect ratios then another curve

is generated to predict damage initiation based on a different criterion.

Damage initiation loads were calculated for the 0" unidirectional beams using the first ap-

proach discussed above and the results from the a/h=7.33 aspect ratio beam geometry. For

the remaining stacking sequences, the second approach was implemented using the following

procedure. The summary of different damage states given in Tables 2, 3, and 4 demonstrated

that the investigation of several different damage mechanisms was required to predict the

damage initiation loads. Subsequently, the damaged specimens were classified into four

groups on the basis of similar damage mechanisms. The first group consisted of all the lam-

inated beams which had a span length-to-depth aspect ratio less than 1.00 (see Table 1). The

type of damage observed in these laminates was in the form of localized crushing and a

maximum contact pressure was assumed to be an applicable damage criterion. The second

group of laminates was on the opposite end of the spectrum for the range of aspect ratios

considered, i.e., a/h greater than 12.0. Four different beam configurations were included in

this group, the [0/___45/90]u and [O/+60]ts stacking sequences having aspect ratios equal to

12.50 and 22.92, all of which experienced a tensile failure mode. Consequently, the postulated

criterion for predicting the damage initiation loads was based on a maximum tensile bending

stress located at the back-face of the beam. The third class of beams was comprised of
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laminate geometries which corresponded to initial damage in ihe form of a delamination.

Finally, when the initial damage was described by matrix cracks in |he 90_ or off-axis plies the

beam configuration was classified into the fourth group. For the specific stacking sequences

and aspect ratios in the last two groups refer back to Tables 2, 3, and 4. The postulated

damage Initiation criteria for the third and fourth groups will be discussed later in this chapter.

The next step in the procedure was to analytically determine the local stress states which

corresponded to the damage initiation load and the damage location. Depending on the type

of damage which was similar in each group, the results were examined to determine the

component and magnitude of stress to use as a damage initiation criterion.

6.3.1 Unidirectional Beams

The observed damage states reported in Chapter 5 for the 0= unidirectional beams consisted

primarily of delaminations at z = h/6 and at the midplane for the largest aspect ratios tested.

Also, the results for the experimentally measured loads showed the damage initiation load to

be equal to the ultimate failure load. Consequently, the criterion used for predicting damage

initiation also applies for predicting ultimate failure and can be based on the magnitude of

interlaminar shear stress, _-==,which causes a delamination. For the smaller aspect ratio

beams tested, the observed damage was a transverse splitting in the xz-plane which seemed

to initiate under the loading nose. Based on the two-dimensional elasticity analysis, calcu-

lated normal stresses along the x-direction under the loading nose are compressive and

therefore can not cause splitting. Also, experimental observations indicate that, as opposed

to the deformation patterns assumed by plane strain or generalized plane deformations, there

is significant local out-of-plane deformation in the vicinity of the load nose. These observa-

tions suggest that the actual stress distribution under the load nose is three-dimensional and

complex. It is possible that the observed splitting initiates slight!y away from the load nose

due to tensile stresses resulting from the local out-of-plane deformations. Therefore, the
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two-dimensional analysis developed in Chapter 3 would not be expected to accurately predict

the observed splitting failures.

For the prediction of delaminations the magnitude of the maximum shear stress, ¢,=, is used

as a damage initiation criterion. The a/h = 7.33 beam configuration was analyzed to determine

the magnitude of¢_ at t_e midplane of the beam when subjected to the damage initiation load.

The distribution of shear stress, ¢_, along the beam's span and at the midplane shows the

maximum value to be located half-way between the midspan and the supports. For a 0°

unidirectional beam the global coordinates and material coordinates coincide and the _

component of stress is equivalent to _3- The calculated maximum value was in good agree-

ment with reported shear strengths of approximately 10 ksi for this material system. Conse-

quently, a shear strength value, $1=, equal to 10 ksi was used to determine the applied load

which would produce an interlaminar shear stress at the midplane having a magnitude of

$13. This criterion was also applied to other 0= unidirectional beams having different span

lengths. The correlation between the predicted loads as a function of beam aspect ratio and

the experimental results are shown in Figure 77. It is seen that the maximum shear stress

criterion slightly over predicts the damage initiation load for the highest aspect ratio tested

but in general a satisfactory correlation between theory and experiment was achieved.

6.3.2 Crushing Mode

For the elliptical traction distribution described in Section 6.1.1, the maximum contact pressure

is equal to:

2P_
Pmax- lrbd (21)
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where P_ is the damage initiation load, b=1.0 for a unit width, and d is equal to the contact

length. The results for the maximum contact pressure calculated from equation (21) for the

beams having an aspect ratio less than 1.0 are shown in Figure 78. The results range from

a minimum of 54.623 ksi for the cross-ply beam to a maximum of 75.734 for the [0/+45/9011_

beam. A criterion based on an average maximum contact pressure for the seven beams in-

cluded in this group would predict damage initiation if the contact pressure was larger then

63.5 ksi. However, instead of a criterion based on an average value, a threshold value could

be used which would predict crushing of a beam's top surface if the applied contact pressure

exceeded 54 ksi.

An isotropic beam having similar geometry would likely fail along a slip line associated with

the plane of maximum shear stress. In Chapter 4, it was shown that for an orthotropic beam

the maximum shear stress contour was located directly under the loading nose and very high

gradients existed. Therefore, a possible alternative to the contact pressure criterion for pre-

dicting the crushing damage mode would be a maximum shear stress criterion. For this group

of seven beams, an average maximum shear stress value of 52.1 ksi was calculated at d/2

away from the midspan and near the top surface.

6.3.3 Tensile Mode

The magnitude of the tensile bending stress in the bottom 0* plies was assumed to be an ap-

propriate damage initiation criterion for the second group of beams. The analytical stress

calculations for the four beams in this group had an average maximum bending stress of 280

ksi when the beams were subjected to their damage initiation loads. A commonly reported

value for the uniaxial tensile strength of an AS4/3501-6 graphite/epoxy 0° specimen is 300 ksi.

The damage initiation loads which would produce an ultimate tensile bending stress of 300

ksi in the bottom 0° ply were determined. The results for the [0[+45/90]= beams having a/h
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equal to 22.97 and 12.50 were o.g7 kips and 1.75 kips. respectively. For the ro/_+60]_ beams

having the same aspect ratios the results were 0.95 kips and 1.71 kips. These results are

approximately 9% larger than the experimental results. Consequently, the damage initiation

criterion based on the maximum tensile bending stress equal to 300 ksi accurately predicted

the damage initiation loads for this group of specimens.

6.3.4 Delamination Mode

The third group of laminates was classified on the basis of a delamination type of damage

mode. The proposed criterion for predicting the damage initiation loads was based on the

interlaminar shear stress distribution along the interface which corresponded to the location

of the delamination. In general, for the case of a large aspect ratio beam the delaminations

were close to the midplane. The interlaminar shear stress, _,,, at that point is maximum

half-way between the load and support points and the normal component of stress, c,=, is ap-

proximately equal to zero. However, as the aspect ratio becomes small, the delaminations

occur at an interlace which is above the midplane. The distribution of the interlaminar shear

stress along these interfaces showed the maximum value to be located closer to the midspan

and the applied loading. Consequently, the location of the maximum interlaminar shear stress

coincided with a compressive normal stress, a=, which would prevent the delamination.

Moving along an interface which is located close to the top surface, away from the midspan

and the load nose, the magnitudes of the compressive normal stress and the interlaminar

shear stress decrease. Therefore, when evaluating the analytical results for the interlaminar

shear stress distribution the z-location of the interface corresponding to the observed delam-

ination is an important parameter in developing a valid damage criterion. For the smaller

aspect ratios, the z-location of the delamination led to a damage initiation criterion being

based on a magnitude of interlaminar shear which was not an absolute maximum value. The

damage criterion for predicting damage initiation loads for this group of beams was subse-
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quently based on an average value of the results shown in Figure 79, which was equal to 8.5

ksi.

6.3.5 Matrix Cracking Mode

For the group of laminated beams which experienced initial damage in the form of matrix

cracks, cracks were experimentally observed in either the 900, 45 °, or 60 ° plies. Depending

on the stacking sequence and the orientation of the fibers, different local states of stress can

exist in a layer which can be related to the existence of matrix cracks. For the case of cracks

in a 9(P ply and considering the components of stress in the xz-plane, the stresses will be

acting along the principal material directions in the transverse 23-plane. This corresponds to

the component of stress or,., being equal to o,= and Tz=equals T_. Consequently, a criterion for

predicting matrix cracks in a 90' ply located below the midplane can be based on the beam's

bending stress, a,=, exceeding the transverse tensile stength of the material system. An al-

ternative criterion, regardless of the crack's location, is the in-plane shear stress exceeding

an allowable transverse shear strength. A resulting damage criterion which combines the

above components of stress, a,=, T,= and also a== is based on the principal stresses in two di-

rections. The components of stress in the xz-plane are rotated to their principal directions

along which the maximum and minimum normal stresses act. Also, the plane of maximum

shear is determined. The damage initiation load can then be predicted based on the maxi-

mum principal normal stress reaching an allowable transverse tensile strength or based on

an allowable shear stress. The numerical calculations for the principal stresses in the speci'

mens with 90" ply matrix cracks were performed under the experimentally measured damage

initiation load. The results for the maximum shear stress at the observed damage site are

presented in Figure 80 and will be discussed later in this section.

Analytical/Experimental Correlation 192



[(O/90)8/(go/o)813S
E_ [o/6o/-6o]_5 s

W

z_

.j. [0/45/-45/90125 S

lo ----_ _-_ [0/45/_45/90115s

8_
I

6_

4_

2_
±

oi

x_
X)<
X_

x)<

Xx
×x
Xx
XX

;f
/
,/(,

/

/

/

/

/
/

/
/

/,,
, /
Z/

\ \
\ \
\ \

\ \
,X

\ \\

\ \

\,)\,
\\

[o/6o/-6O]2o s

0
/%

y

X
V
A

X
V

V

x
X
X
v"
/.%

x
X
x

X:
X'
4

I',,f

IR
iX"

X
.X "T

vX
o_
/\ v
v

× ^
××
v 5(

U _

_x

× ,,g

Xx
V

// v-

Y f2b_ ^
A,,X
,,,×V"
A

/% V

y ^
v X
/% V

/Y
//

//
//
//
//
//
//
//
//
,//

SPEC|MEN

Figure 79. Interlamlnar sheer stress magnitudes for the group of beams which had a delami-
nation.

Analytical/Experimental Correlation 193



In the case of a matrix crack in a 45" or 60' ply the development of a valid damage criterion

is more involved than in the case of a 90" ply. In addition to considering the components of

stress in the xz-plane, the components of stress in the xy-plane must be examined. The xy-

plane components of stress can be rotated to the principal material directions in the 12-plane

and a criterion can be formulated based on these results. However, in order to compare with

the 90" results presented above, the principal stresses in the xz-plane were initially deter-

mined. The calculated values for the maximum shear stress in the plies having matrix cracks

are shown in Figure 81 for the case of a 45° layer and in Figure_82 for the 60 ° layers.

The results presented in Figures 80-82 show that a wide range of maximum shear stress val-

ues were calculated at the location of the experimentally observed matrix cracks. Therefore,

it appears that the maximum shear stress by itself does not explain the presence of matrix

cracks in the damaged specimens. The results also indicate that for a given aspect ratio,

comparable values of maximum shear stress were calculated for the 90", 45 °, and 60° plies

containing matrix cracks. Consequently, in correlating the analytical stress predictions with

the observed matrix cracks no distinction between different fiber orientations is required when

only the stress components in the xz-plane are considered. However, the z-location of the

matrix cracks and the beam's aspect ratio are seen to be important influencing factors which

required further investigation. For the different beam configurations in this group, the matrix

cracks in most of the higher aspect ratio beams were located in the neighborhood of the

midplane. As the aspect ratio is decreased, cracks were also seen closer to the top surface

and the loading nose, and the crack density or number of cracks increased. For the case of

a small a/h aspect ratio, the extensive cracking made it difficult to define or pinpoint the lo-

cation of the initial crack. Also for this geometry, there is a minimal amount of beam de-

flection and when a matrix crack occurs there is a corresponding minimal amount of energy

released. Consequently, the manner in which the damage initiation load was determined, i.e.,

the first noticeable reduction in load carrying capacity, may actually overpredict the load at

which the first crack appears.
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To better understand the role which the in-plane shear stress, T,_, plays in the development

of matrix cracks, stress profiles were generated along the span of the beam The distributions

of _r,_ were examined because the largest contribution in the expression for the maximum

shear stress comes from T= in comparison to the normal components of stress, o=, and o=.

An exception to this is when the value of the maximum shear stress is calculated at the

midspan and.close to the top surface where large axial compressive stresses exist. The dis-

tribution of z_= along the span of the beam was determined at different z-locations corre-

sponding to the various layers in which matrix cracks were observed for the different beam

geometries. The results for the span length profiles focused on the grouped stacking se-

quences which were shown in Tables 3 and 4 to have the largest percentage of specimens

containing matrix cracks. In Figures 83-85 the distributions are presented for the

[0_/45s/- 45=/90=]_s laminated beams having aspect ratios of 1.00, 3.00, and 5.50, respectively.

The five curves in each figure correspond to the five 45 ° plies located above the midplane.

As mentioned above, similar profiles exist for the 9(7' plies in this stacking sequence and for

the 6(7' plies in the [0_/60s/- 60_]7s stacking sequence. In all three of the figures, very large

shear stress gradients exist in the neighborhood of the midspan and in the top 45 ° layer.

However, the maximum value of shear stress in this layer may not necessarily result in a

matrix crack because, as previously stated, there are large compressive stresses in this re-

gion. On the other hand, the existance of very large gradients correlates with the increase in

crack density seen for the case of a small aspect ratio beam Also, for a small as0ect ratio

beam the observed crack pattern can be described by a series of cracks extending along a

line from the loading nose to the support points. The location of the peaks in the five 3,= stress

profiles shown in Figure 83 correlates with the above described cracking pattern. For the case

of a large aspect ratio beam the observed cracking pattern was concentrated at the beam's

midplane with several cracks located along a line drawn from the midspan to the end-face of

the beam. This correlates with the T,= stress profiles shown in Figure 85, where for a large

aspect ratio beam the profiles corresponding to the layers closest to the midplane have a

fairly uniform stress distribution.
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6.4 Damage Susceptibility

The last issue addressed in the experimental/analytical correlation study is the damage sus-

ceptibility of the tested laminated beam geometries. As described in Chapter 5, damage

susceptibility measures how easily damage is induced in a laminated beam when subjected

to an applied load. After damage has been initiated, the damage tolerance defines the beam's

ability to provide additional load carrying capacity and withstand additional damage. A qual-

itative assessment of the damage susceptibility and the damage tolerance of the beam ge-

ometries tested was discussed in Chapter 5 based on the experimentally measured damage

initiation and ultimate failure loads. In this section, the analytical results for the through-the-

thickness stress profiles are used to quantify some of the statements made on the basis of the

experimental results.

Through-lhe-thickness stress profiles for the in-plane components of stress were generated

for all of the quasi-isotropic beam configurations given in Table 1. The stress profiles are at

an x-location corresponding to the location of initial damage and for an applied load equal to

the damage initiation load. Generally, for damage that was concentrated at the beam's

midplane, the x-location of the damage was half-way belween the load and support points,

whereas for specimens with damage located closer to the top surface the x-location of the

damage was in the vicinity of the beam's midspan. The results for the bending stress, a,=, and

the in-plane shear stress. _,=, are given in Appendix B. Of primary importance in correlating

the previously described damage susceptibility (see Section 5.3.3) with the stress profles is

the shear component of stress, "r_. Recall that in sections 6.3.4 and 6.3.5 both the delami-

nations and matrix cracking modes of damage were explained in terms of the in-plane shear

stress, "r,= .
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Based on the experimental results, for an alh aspect ratio greater than 2.50 the [0/_+45/9012_

stacking sequence was more damage susceptible than the [0/+_6013 _ laminate, i.e., the

[0/-I-45/90]zss beams had smaller damage initiation loads. The through-the-thickness z,¢ stress

profiles for the two different stacking sequences under applied loads equivalent to their re-

spective damage initiation loads and an x-location close to the midspan are compared in

Figure 86. The results presented are for the case when the [0/__.45/90]z_ and [0/__+60]_ had

aspect ratios of 5.50 and 5.24, respectively. Because of the difference in the thickness of these

two laminates, comparison of exactly equal a/h ratios was not possible. This figure illustrates

that the two laminated beams have very similar stress profiles even though the [0/+_45/9012 _

results are for a smaller damage initiation load (8.52 kips) compared to the damage initiation

load of the [0/+60"]_ laminate (10.40 kips). Consequently, for a given load level the shear

stress distribution in the [0/-t-45/90]z, _ beam will have a larger magnitude in comparison to the

[0/+60]3_ beam and therfore be more susceptible to damage initiation. Similar results were

seen when the results for the [0/-J-45/90]z_ laminated beam having an aspect ratio of 3.00

were compared to the [0/+60]_ beam having an aspect ratio of 2.86.

In the case of a/h ratios less than 2.50, however, the ['0/_.+60]_ laminated beams were more

susceptible to damage than the [0/___45/90]z_ beams. Figure 87 compares the two through-

the-thickness stress profiles at an x-location close to the midspan when the aspect ratio was

equal to 0.50 for the ro/+45/90-]z_ and 0.48 for the [0/-t-6013 _ beam. The comparable stress

profiles at the two loads, 24.6 kips for the [0/+60]_ laminate and 27.4 kips for the

[0/+45/g0]z,_ laminate indicate that for the same applied load the [0/_+60]_ beam will have

larger shear stresses, which correlates with the experimental results that the [0/+60]_ beam

is more susceptible to damage initiation. Also presented in Figure 87 are the results for the

grouped stacking sequences, i.e., [_0_/45_/- 45_/905]_s and [0_/60_/- 60_]7s, having the same

aspect ratios. Again it is seen thai the analytical predictions for the distribution of _r,

through-the-thickness are very similar between the different lamination sequences which had

different damage initiation loads (20.2 kips for the [0_J455/- 45J90_]= beam compared to 26.1
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kips for the [0=/60=/- 60=]7s beam). Therefore, based on the analytical stress profiles for a

given applied load the 10=/45J--45J90=_]= beams will have a larger shear stress than the

[0_/60=/-60=]7s beams and thus be more damage susceptible. In addition, the profiles

quantitatively support the experimental results which indicated the grouped stacking se-

quences to be more susceptible to damage than the interspersed stacking sequences. This

is a direct consequence of the similar stress profiles and the differences in loads at which

damage was initiated.

In contrast to the beams having an interspersed stacking sequence and an aspect ratio

greater than 2.50 where the damage was located close to the top surface, the initial damage

in the grouped stacking sequence beams was concentrated around the midplane. For the

most part, based on the damage descriptions in Tables 3 and 4 and the damage initiation

loads, the laminated beams having initial damage located at the midplane are more damage

susceptible than the beams having initial damage located closer to the top surface. The "r,=

stress profiles for the [0=/45J - 45=/90=]_ and the [0=/'60=/- 60=]7s beams having aspect ratios

of 5.50 and 5.24, respectively, are shown in Figure 88. Since the damage was located near the

midplane, the results are for an x-location halfway between the load and the supports and the

profiles resemble a parabolic distribution. The [0=/60=J- 60=]7s profile has a slightly larger

shear stress at the midplane in comparison to the [0=/45=/- 45_/90=]_ results. However, due

to the large difference in their damage initiation loads, 4.28 kips for the j'0=/45s/- 45_/90=]_

laminate versus 6.67 kips for the [0=/60=/- 60=]7s laminate, applying the same load to each

laminate results in the [0=/45=/- 45J90=]= beam having a larger shear stress which corre-

sponds to this beam configuration being more susceptible to damage.
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Chapter VII

Conclusions

7.1 Investigative Approach

7.1.1 Elasticity Solution

The investigation of damage states in laminated three-point bend specimens has been ap-

proached using a combination of experimental and theoretical research techniques The

mathematical theory of elasticity was the basis for developing the analytical solution to de-

termine the stress distributions in a laminated beam. A stress formulation was used where

the applied tractions were expressed in terms of a Fourier series and were representative of

the contact stress distribution for static indentation. The static problem was considered as a

first step towards understanding impact damage where a quasi-static loading was used to

simulate a low velocity, large diameter impact. The expressions for the stresses and dis-

placements were derived for the case of an arbitrary laminated beam of finite length and for
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an assumed generalized plane deformation stress state. This was an extension of Whitney's

[14] work for a homogeneous single-layered orthotropic beam under plane strain or plane

stress conditions. The stress function approach in [14] was modified in the present study for

a state of generalized plane deformation to properly account for off-axis plies in the stacking

sequence. This required formulating an expression for a second stress function which re-

sulted in two governing partial differential equations which were coupled. For the case of an

orthotropic ply, a transversely-isotropic ply, or an isotropic ply the problem was reduced to

plane strain conditions.

The solutions for the stresses and displacements were applied to each layer of the laminated

beam and interfacial continuity of stresses and displacements were imposed. The applied

tractions were prescribed on the top and bottom surfaces of the beam which corresponded to

the loading and support points. The traction free end-face conditions were approximately

satisfied by requiring the resultant forces and moments to vanish. Subsequently, a program

was written and verified to correctly perform the necessary numerical calculations in the sol-

ution procedure. Convergence of the infinite series solution was based on the agreement

between the applied traction on the top surface and the resulting or,, distribution along the

same surface.

7.1.2 Preliminary Analyses

Prior to conducting the experimental phase of the research, a preliminary analytical study was

performed to aid in developing a suitable test matrix. The preliminary analyses investigated

the geometric, shear-coupling, and stacking sequence effects on the stress distributions in a

laminated beam subjected to three-point bending Significant effects were seen in the dis-

placements and the ply-level stress distributions depending on the fiber orientation, span

length-to-depth aspect ratio, and whether or not a grouped or interspersed stacking sequence

Conclusions 209



wasused.Thelocationand magnitude of the maximum shear stress, T., was shown to be a

strong function of the beam's stacking sequence. In general, the maximum shear stress was

located below the top surface and was associated with very high gradients in the vicinity of

the applied load.

The results for unidirectional laminates consisting of off-axis ply orientations showed signif-

icant shear coupling effects for a wide range of fiber orientations. The shear coupling effects

were seen to increase the effective stiffness of the laminated beam, although these effects

diminished as the beam's aspect ratio became small. For the generalized plane deformation

siress state none of the components of stress are identically equa= to zero, and it was seen

that the out.of-plane shear stress, T,y in the off-axis layers was larger in magnitude than its

in-plane counterpart. Consequently, the more complicated generalized plane deformation

analysis, as compared to plane strain or plane stress, was required to accurately determine

the local stress states when off-axis plies were used in the stacking sequence.

Stacking sequence effects on the local stress state were determined by considering grouped

and interspersed quasi-isotropic stacking sequences. Continuous components of stress

across the interface were seen to be independent of the aspect ratio when this ratio was

greater than 1.0. When the aspect ratio was less than 1.0, the influence of the bottom support

points was seen in the through-the-thickness stress profiles near the midspan. Conversely,

the discontinuous components of stress strongly depended on the beam's aspect ratio. The

effect of grouping plies of equal fiber orientation together was a reduction in the maximum

bending stress and a reduction in the out-of-plane shear stress for the off-axis plies. However,

as the aspect ratio of the beam became small, the differences between the grouped and in-

tersperse_l beam's stress states decreased.
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7.1.3 Experimental Study

The damage states in laminated beams subjected to a quasi-statically applied load were de-

termined by conducting an experimental study on three-point bend specimen geometries. The

test matrix covered a wide range of specimen length-to-thickness and support span-to-

thickness ratios. The different stacking sequences used in the test matrix were 0°

unidirectional, cross-ply, and various quasi-isotropic laminates having either a [0/+45/90] or

a [0/-I-60] basic ply grouping and both interspersed and grouped layers were considered (see

Table 1, Chapter 5). The experimental data consisted of the top and bottom surface dis-

placements, and the damage initiation and ultimate lailure loads. The dependence or" the ini-

tial damage and ultimate failure load on the beam's aspect ratio were identified, and the

issues of damage susceptibility and damage tolerance were addressed. Possible damage

states were defined by a post-test visual inspection of the damaged specimens using an op-

tical microscope.

7.2 Summary of Results

7.2.1 Displacements

The behavior of the load-displacement and load-indentation curves was experimentally seen

to be linear up to the initiation of damage with the exception of the 12' unidirectional beams.

The top surface local indentation in these curves was calculated by taking the difference be-

tween the measured top and bottom surface displacements after adjusting their values for

non-beam related deformations. The analytical study for the displacements used an elliptical
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traction distribution to model the contact at the load and support points, and an incremental

loading procedure was used to update the contact length as a function of the applied loading.

The minor axis of the ellipse was equal to the contact length which was analytically deter-

mined based on Sankar's [37] work for an orthotropic beam, and the major axis was propor-

tional to the applied load.

Initially, the results from the unidirectional beam analysis for the midspan deflection were

compared to the experimental results. For the largest aspect ratio of 7.33 reasonably good

agreement was seen between the experimental data and the analytical prediction in the initial

linear portion of the plot. However, a poor correlation between the elasticity solution and the

experimental displacements was seen for the beam geometries having aspect ratios of 4,00,

1.33, and 0.67. The discrepancies were believed to be a result of some uncertainty in the ex-

perimentally measured quantities and the actual boundary conditions. Similar problems were

encountered in correlating the experimental and theoretical displacements in the other beam

configurations. The results for the indentation were based on the difference between the top

and bottom surface displacements, and therefore the same correlation difficulties were en-

countered as discussed for the midspan deflection.

7.2.2 Damage Descriptions

Several different damage mechanisms were identified when the damaged specimens were

visually inspected. The basic modes consisted of delaminations, matrix cracking, fiber

breakage, and crushing. The dependence of the type of damage on the beam configuration

was summarized in Tables 2-4, Chapter 5. The primary damage in the 0° unidirectional beams

was a delamination at the midplane for the larger aspect ratios, and a transverse splitting

mode for the smaller aspect ratios. The transverse splitting, i.e., a crack in the xz-plane of the

beam, was indicative of a three-dimensional stress state existing for this particular geometry.
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Consequently, the two-dimensional analysis developed in the present study was not expected

to accurately predict the local stress states and no attempt was made towards correlating the

experimentally observed damage with the theoretical stress distributions for the 0°

unidirectional beams. However, a satisfactory correlation between theory and experiment

was achieved for the delamination mode based on the magnitude of the maximum shear

stress at the midplane.

The observed damage in the remaining laminates, i.e., cross-ply and quasi-isotropic, was

correlated with the predicted stress distributions on the basis of the particular mode of dam-

age. The crushing mode, which occurred in all of the beam configurations having an aspect

ratio less than 1.0, was satisfactory explained quantitatively on the basis o! the maximum

contact pressure. The tensile mode or fiber breakage was an isolated case and was only

observed in the 0.24 inch thick quasi-isotropic specimens having aspect ratios of 22.92 and

12.50. Accurate predictions for the damage initiation loads were obtained based on the max-

imum tensile bending stress in the bottom 0" ply exceeding the allowable tensile strength.

The group of beams which experienced a delamination largely consisted of laminates having

an interspersed stacking sequence and a large aspect ratio. The interlaminar shear stress,

•r,=, at the interface where the delamination was located explained the delamination mode of

damage. Careful consideration was given to the through-the-thickness location of damage

due to the presence of compressive normal stresses which would prevent delamination.

When the delaminations were located close to the top surface the maximum interlaminar

shear stress coincided with large compressive normal stresses. Consequently, when corre-

lating the experimental results with the analytical results a value for the interlaminar shear

stress less than the absolute maximum value corresponded to the initial damage in the form

of a delamination. Conversely, the matrix cracking mode of damage was predominantly seen

in the grouped quasi-isotropic laminated beams. Similar to the delamination mode, the cracks

in the higher aspect ratio beams were located near the midplane, whereas for smaller aspect

ratios the cracks were concentrated closer to the top surface. Again, the through-the-
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thickness location of the matrix cracks was an important factor because of the compressive

normal stresses. The results for the maximum shear stress in the xz-plane indicated that this

quantity did not explicitly explain the presence of matrix cracks in the off-axis plies. However,

even though the analytical solution for the stresses accounted for the different fiber orien-

tations, the maximum shear stress results Indicated that no distinction between 90', 45o, and

6(7' layers was required in the analyticallexperimental correlation. This statement can be

made when the components of stress in the xz-plane are solely considered. Clearly, if the

components of stress in the xy-plane are considered then the there should be a definite de-

pendence on the fiber orientation. Span length profiles for the shear stress T,., were generated

to quantify the occurance of experimentally observed matrix cracks. The profiles exhibited

very large gradients in the neighborhood of the rnidspan which correlated with the increase

in crack density seen in the smaller aspect ratio beams. For a large aspect ratio beam the

uniform distribution of ¢,_ along the span in the layers closest to the midplane correlated with

the experimentally observed cracking pattern.

7.2.3 Damage Susceptibility and Damage Tolerance

The susceptibility of a laminate to damage is a measure of how easily damage can be induced

as a result of an applied load. Experimentally, this was determined by measuring the load

at which the first sign of damage was observed. Once the initial damage is present, how well

it is tolerated with regard to ultimate failure defines the beam's damage tolerance. A quanti-

tative measure of damage tolerance is the ratio of the damage initiation load to the ultimate

failure load. The linear elastic analysis used in the present study was limited to accurately

predicting the stress distributions up to the initiation of damage. Consequently, the theoretical

results were only used in correlating the stress distributions wit_ the experimental results for

damage susceptibility.
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In comparing the damage initiation loads for the quasi-isotropic laminated beams having an

interspersed stacking sequence and for a given a/h aspect ratio, the 0.24 inch thick beams

were experimentally seen to be the most damage susceptible. For the most part, the quasi-

isotropic beams having the [0/:1:45/90] basic ply grouping were more susceptible to damage

than the [01+60] beams. Also, the results indicated the grouped stacking sequence to be

more damage susceptible than the interspersed stacking sequence. The analytical results for

the through-the-thickness _,z shear stress distribution correlated with the experimentally de-

termined damage susceptibility. The dependence of the load on the beam's aspect ratio

showed that the a/h ratio did not uniquely define the damage initiation load nor the ultimate

failure load. Consequently, the results presented for the damage tolerance compared the

different beam configurations which had equal thicknesses but varying aspect ratios. For an

overall beam thickness of approximately 1.0 inch, the damage tolerance of the different beam

geometries was seen to increase as the aspect ratio decreased. However, for aspect ratios

greater than 5.0and less than 1.0 the beams were highly damage intolerant. In general, the

cross-ply beams were the least tolerant to damage. For a/h greater than 1.0 the

[0_/60_/-60_37s beams were the most tolerant, whereas for a/h less than 1.0 the

[0_/45J - 45s/90_]ss beams had the largest damage tolerance. In comparing the [0/+__45/90],_s

and the [O/___60]z0sbeam results, which corresponded to a beam thickness equal to 0.6 inches,

the[O/__+60]z0s stacking sequence was seen to be highly intolerant to damage. The results for

the 0.24 inch thick beams indicated that both of the [0/+45/90]_ and the [0/_+_60]_ stacking

sequences were highly damage intolerant.

The present experimental�analytical correlation study examined the beam displacements,

damage modes, and damage susceptibility for a three-point bend specimen geometry. The

results of this investigation clearly indicated that damage susceptibility and damage tolerance

need to be differentiated, and that both of these quantities strongly depend on the type of

laminate, aspect ratio, thickness, and stacking sequence for the specimen geometry consid-

ered. The results also showed that different damage modes can be produced depending on
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the beam configuration, i.e., laminate type, aspect ratio, thickness and stacking sequence. In

addition, the results of the correlation study indicated that the multilayer elasticity model can

be used to rank damage susceptibility of different laminates and develop predictive capability

for damage susceptibility. The correlation of the experimentally determined damage toler-

ance with the theoretical stress distributions was not performed because of the limitations in

the analytical procedure. The linear elastic analysis developed in the present study can ac-

curately predict the ply-level stresses up to the load at which damage is initiated. The prob-

lem of damage accumulation and the redistribution of stresses up to the ultimate failure load

needs investigating to analytically predict damage tolerance. Also, to study the effects of dif-

ferent load paths on the initial damage states, the problem of different loading conditions, e.g.,

end loading, after damage has been initiated needs to be addressed.
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Figure 125. Load versus displacement for the [01601-60}e $ laminate with an aspect ratio of 22.92.

Experimental Load-Displacement Data 257



CL
.m

v

n

10

2

0

0.000

[0/60/-0018 S beam: a/h= 1 2.50

ultimate failure

-- d_mage initiation

P-,1.66 kips, P -1.71 kips
i u

0.100 0.200 0.300 0.400

w (in.)

Figure 126. Load versus displacement for the [01601.60_S laminate with an aspect ratio of 12.50.

Experimental Load.Displacement Data 258



CL
°_

,,e
V

ZZ.

I0

2

[0/60/-6018 S beam: a/h=4.17

ultimate failure

P =2.85 kips. P =3.05 klps
i u

0

0.000 O. 1O0 0.200 0.300 0.400

w (in.)

Figure 127. Load versus displacement for the [01601-6018s laminate with an aspect ratio of 4.17.
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Figure 128. Load versus displacement for the [01601.60]!1 $ laminate with an aspect ratio of 2.08.
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Through-the-Thickness Stress Distributions

Through.the-Thickness Stress Distributions 271



r-

N

0.500

O.400

0.300

0.200

0.100

0.000

-0.100 -

-0.200 •

-0.300

-0.400 -

L_

3==_
-,__.
--,._._

R==

[0/45/--45/90125 S

a/h=5.50

x--2.928 in.

-0.500 , _ : I _ , , , ,_----_,,, _ . ,

-300 -200 -100 0 100 200

o" (ksi)
XX

3OO

Figure 139. Through.the.thickness distribution for _)o( In the [0145145190125s laminate with an
aspect ratio of 5.50.
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Figure 140. Through.the.thickness distribution for _xz in the [01451-45190]25 s laminate with an

aspect ratio of 5.50.
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Figure 141. Through-the.thickness distribution for =rxx in the [O14S14'319012S s laminate with an
aspect ratio of 3.00.

Through-the-Thickness Stress Distributions 274



0.500 -:

0.400

0.300

(-

N
0.000

-0.200

-0.300

-0.¢00

[0/45/- 45/90125 S

a/h=3.00

x==2.91 9 in.

-0.500

-40 -35 -30 -25 -20 -15 -1o -5 o

1- (ksi)
xZ

Figure 142. Through-the-thickness distribution for _xz In the [01451-4519012s s laminate with an
aspect ratio of 3.00.
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Figure 143. Through-the-thickness distribution for Oxx In the [01451.4519012s s laminate with an
aspect ratio of 1.00.
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Figure 146. Through.the-thickness distribution for _xz In the [01451-45190]25 s laminate with an
aspect ratio of 0.50.
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Figure 148. Through-the-thickness distribution for txz in the [01451-45#g0] grouped laminate with
an aspect ratio of 5.50.
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Figure 150. Through-the-thickness distribution for txz In the [0/451-45/90] grouped laminate with
an aspect ratio of 3.00.
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Figure 151. Through.lhe.thlcknese distribution for _,_ in the [01451.45/90] grouped laminate with
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Figure 152. Through.the.thickness distribution for txz In the [01451.45180] grouped laminate with
an aspect ratio of 1.00.

Through.the.Thickness Stress Distributions 285



0.500

..C2

N

0.400

0.300

0.200

0.100

0.000

-0.100

-0.200

-0.300

-0.400

-0.500 -_--_

-300

[%/4%/- 4Ss/gOs]ss

a/h=0.SO

x=2.889 in.

t } _-t t t l-: ,-t ! _ t , _ I __, j ,
-200 - 100 103 200 300

I

0

(ksi)
×X

(7

Figure 153. Through-the-thickness distribution for axx In the [01451-45/90] grouped laminate with

an aspect ratio of 0.50.
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Figure 155. Through-the-thickness distribution for G_oc In the |01451-45/90115 s laminate with an
aspect ratio of 9.17.
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Figure 15S. Through.the-thickness distribution for axx in the |01451451g0115 s laminate with an
aspect ratio of 1.67.
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Figure 161. Through.the.thickness distribution for 6xx In the [01451-4§190115s laminate with an
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Figure 162. Through.the-thickness distribution for txz in the [01451-45190115 s laminate with an
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Figure 163. Through-the.thickness distribution for exx In the [01451-4519016s laminate with an
aspect ratio of 22.92.
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Figure 179. Through-the.thickness distribution for axx In the [01601.60] grouped laminate with an
aspect ratio of 5.24.
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Figure 181. Through-the-thickness distribution for #xx in the [0160/-60] grouped laminate with an
aspect ratio of 2.86.
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Figure 184. Through-the-thickness distribution for txz In the [01601-60] grouped laminate with an
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Figure 189. Through-the-thickness distribution for _xx in the [01601.60]20 s laminate with an as-
pect ratio of 5.00.
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